Influence of the Electrolyte Composition on the Corrosion Behavior of Anodized AZ31B Magnesium Alloy

Article Preview

Abstract:

Investigations have been performed to study the effects of the electrolyte composition on the properties of anodized films grown on AZ31B magnesium alloy. The corrosion protection ability of the oxide layers was explored by using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy. Film morphology was examined by scanning electron microscopy and confocal laser scanning microscopy. In spite of its higher roughness average, the film formed in the silicate and hydroxide mixed solution enhanced the protective properties of the anodized layer, thus reducing the substrate dissolution rate.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1012)

Pages:

424-429

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Witte, N. Horn, C. Vogt, S. Cohen, C. Ulrich: Current Opinion in Solid State and Materials Science Vol. 12 (2008), p.63.

Google Scholar

[2] M.P. Saiger, A. Pietak, J. Huadmai: Biomaterials Vol. 27 (2006), p.1728.

Google Scholar

[3] W. Ximei, Z. Ligun, L. Huicong, L. Weiping: Surface & Coatings Technology Vol. 202 (2008), p.4210.

Google Scholar

[4] A. Yabuki, M. Sakai: Corrosion Science Vol. 51 (2009), p.793.

Google Scholar

[5] T. Yan, L. Tan, B. Zhang, K. Yang: Journal of Materials Science & Technology Vol. 30 (2014), p.666.

Google Scholar

[6] G.L. Song: Corrosion of Magnesium Alloys. (Woodhead Publishing Limited first ed. Cambridge, 2011).

Google Scholar

[7] G.L. Song: Corrosion Science Vol. 49 (2007), p.1696.

Google Scholar

[8] Y. Song, D. Shan, R. Chen, F. Zhang, E. Han: Materials Science and Engineering C. Vol. 29 (2009), p.1039.

Google Scholar

[9] L. Chai, X. Yu, Z. Yang, Y. Wang, M. Okido: Corrosion Science Vol. 50 (2008), p.3274.

Google Scholar

[10] R. Zeng, F. Witte, W. Dietzel: Advanced Engineering Materials Vol. 10 (2008), p.3.

Google Scholar

[11] L. Tan, X. Yu, P. Wan: Journal of Materials Science and Technology Vol. 29 (2013), p.503.

Google Scholar

[12] F. Witte, J. Fisher, J. Nellesen, C. Vogt, J. Vogt: Acta Biomaterialia Vol. 6 (2010), p.1792.

Google Scholar

[13] H. Fukuda, Y. Matsumoto: Corrosion Science Vol. 46 (2004), p.2135.

Google Scholar

[14] R.F. Zhang, D.Y. Shan, R.S. Chen, E.H. Han: Materials Chemistry and Physics Vol. 107 (2008), p.356.

Google Scholar

[15] D. Xue, Y. Yun, M.J. Schulz, V. Shanov: Materials Science & Engineering C Vol. 31 (2011), p.215.

Google Scholar

[16] A.S. Salman, R. Ichino, M. Okido: Transactions of Nonferrous Metals Society of China Vol. 19 (2009), p.883.

DOI: 10.1016/s1003-6326(08)60370-2

Google Scholar

[17] W. Li, L. Zhu, Y. Li, B. Zhao: Journal of University of Science and Technology Beijing Vol. 13 (2006), p.450.

Google Scholar

[18] Y. Liu, Z. Wei, F. Yan, Z. Zhang: Journal of Alloys and Compounds Vol. 509 (2011), p.6440.

Google Scholar

[19] M. Santamaria, F. Di Quarto F, S. Zannab, P. Marcus: Electrochimica Acta Vol. 56 (2011), p.10533.

Google Scholar

[20] X. Guo, M. An, P. Yang, H. Li, C. Su: Journal of Alloys and Compounds Vol. 482 (2009), p.487.

Google Scholar

[21] S. Kim, M. Okido: Bulletin Korean Chemistry Society Vol. 24 (2003), p.975.

Google Scholar