Microstructural Characterization and Mechanical Properties of As-Cast Ti-12Mo-25Nb Biocompatible New Alloy

Article Preview

Abstract:

The β-titanium alloys have properties such as low elastic modulus associated with good properties mechanical, higher corrosion resistance and biocompatibility properties ideal for orthopedic application. Recent studies showed that the traditional Ti–6Al–4V alloy (α+β type) presented biological toxicity due to the presence of Al and V in its composition. In this scenario the present work aims at the fabrication and characterization of the microstructure and the mechanical properties of the as–cast Ti-12Mo-25Nb alloy. This alloy was produced by arc melting with non-consumable tungsten electrode in argon atmosphere. The material was characterized by X–ray diffraction, optical microscopy, Vickers hardness and elastic modulus by impulse excitation. The results of the microstructural characterization showed the presence of the β single phase, hardness equal to 207HV and the elastic modulus equal to 77GPa. These characteristics shows that this alloy is suitable for biomedical application such as implants.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1012)

Pages:

466-470

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Zou, J. Li, W.Y. Wang, Y. Zhang, B. Tang, H. Wang, D. Lin, J. Wang, H. Kou, D. Xu: Computational Materials Science Vol. 152 (2018), p.169.

Google Scholar

[2] S. Zhou, Y. Xu, B. Liao, Y. Sun, X. Dai, H. Pan: Journal of Alloys and Compounds Vol. 768 (2018), p.697.

Google Scholar

[3] K. Bazarnik, P. Brynk, T. Bulutsuz, A.G. Lewandowska, M. Huang, Y. Langdon: Journal of Materials Research and Technology Vol. 4 (1) (2015), p.79–93.

Google Scholar

[4] M. Niinomi, M. Nakai: International Journal of Biomaterials Vol. 2011,.

Google Scholar

[5] J.L. Xu, S.C. Tao, L.Z. Bao, J.M. Luo, Y.F. Zheng: Materials Science & Engineering C Vol. 97 (2019), p.156.

Google Scholar

[6] W.F. Ho, C.P. Ju, J.H. Chern Lin: Biomaterials Vol. 20 (1999), p.2115.

Google Scholar

[7] R. Mythili et al.: Materials Science and Engineering A Vol. 390 (2005), p.299.

Google Scholar

[8] S.B. Gabriel, J.V.P. Panaino, I.D.; Santos, L.S. Araujo, P.R. Mei, L.H. Almeida, C.A. Nunes: Journal of Alloys and Compounds Vol. 536 (2012), p. S208.

DOI: 10.1016/j.jallcom.2011.11.035

Google Scholar

[9] S. Borborema, J. Dille, M.C. Rezende, P. Mei, L.H. Almeida, R. Baldan, C.A. Nunes: Materials Research Vol. 18 (2015), p.8.

Google Scholar

[10] JCPDS - Joint Committee on Powder Diffraction Standard. International Centre for Diffraction Data. Swarthmore, PA, (2004).

Google Scholar

[11] ASTM E92 – 17. Standard test methods for Vickers hardness and Knoop hardness of materials metallics. ASTM International. West Conshohocken, PA, (2017).

Google Scholar

[12] ASTM E384 – 17. Standard test method for microindentation hardness of materials. ASTM International. West Conshohocken, PA, (2017).

Google Scholar

[13] ASTM E1876 – 09. Standard test method for dynamic Young's modulus, shear modulus, and Poisson's ratio by impulse excitation of vibration. ASTM International. West Conshohocken, PA, (2017).

DOI: 10.1520/e1876-01

Google Scholar

[14] J.L. Xu, S.C. Tao, L.Z. Bao, J.M. Luo, Y.F. Zheng: Materials Science & Engineering C Vol. 97 (2019), p.156.

Google Scholar

[15] J.D. Cotton, R.D. Briggs, R.R. Boyer, S. Tamirisakandala, P. Russo, N. Shchennikov, J.C. Fanning: The Minerals, Metals & Materials Society Vol. 67 (6) (2015), p.1281.

Google Scholar

[16] W.F. Ho, C.P. Ju, J.H. Chern Lin: Biomaterials Vol. 20 (1999), p.2115.

Google Scholar

[17] W. XU, X. LU, L.N. WANG, Z.M. SHI, M. QIAN, X.H. QU: Journal of the Mechanical Behavior of Biomedical Materials Vol. 88 (2018), p.534.

Google Scholar

[18] S. Borborema, L.H. Almeida, C.A. Nunes, J. Dille, G.A. Soares: Materials Science and Engineering C, v. 33, p.3319 – 3324, (2013).

Google Scholar

[19] S. Borborema, J. Dille, M.C. Rezende, P. Mei, L.H. Almeida, R. Baldan, C.A. Nunes: Materials Research Vol. 18 (2015), p.8.

Google Scholar

[20] D.S. Vishnu, J. Sure, Y. Liu, V. Kumar, C. Schwandt: Materials Science and Engineering C Vol. 96 (2019), p.466.

Google Scholar