Failure Analysis of Metallic Orthopedic Implant for Total Knee Replacement

Article Preview

Abstract:

Fractures resulting from wear and fatigue process have been identified as the main causes of failure in biomaterials, especially in implants that act in place of bone or other hard tissue, as they are subject to conditions involving severe cyclic loadings. In biomaterialscase, the types of failures mentioned above must also be evaluated under the effect of degradation or corrosion, due to the direct contact with body fluids. The present research analyzed the fatigue induced by corrosion fracture of an orthopaedic implant for total knee replacementproduced with an austenitic ASTM F138 stainless steel. The morphology, compositions of the interfaces and subsequent corrosive pitting were characterized by stereoscopy and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). Stress concentration, inclusions and high carbon levels were the main reasons of failure.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1012)

Pages:

471-476

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.F. Williams: Mater. Sci. Vol. 6 (1976), p.237.

Google Scholar

[2] Y.Okasaki: Biomaterials. Vol. 23 (2002), p. (2071).

Google Scholar

[3] J.Fisher, Z.Jin, J.L. Tipper, M.H. Stone, E. Ingham: Clinical Orthopaedics and Related Research Vol. 453 (2006), p.25.

DOI: 10.1097/01.blo.0000238871.07604.49

Google Scholar

[4] J. Fisher, L.M. Jennings, A.L. Galvin, Z. Jin, M.H. Stone, E. Ingham: Clinical Orthopaedics and Related Research Vol. 468 (1) (2010), p.12.

Google Scholar

[5] R.M. Hall, T.D. Brown, J. Fisher, E. Ingham, S.A. Mendoza, H.M. Mayer: J. Eng. Tribol. Vol. 220 (2006), p.775.

Google Scholar

[6] L.H. Gill: Foot & Ankle Int. Vol. 25(4) (2004), p.195.

Google Scholar

[7] D. Nam, C.K. Kepler, S.J. Nho, E.V. Craig, R.F. Warren, T.M. Wright: J. Shoulder and Elbow Surgery Vol. 19 (2010), p.1003.

DOI: 10.1016/j.jse.2010.05.014

Google Scholar

[8] E. Ingham, J. Fisher: J. Eng. Med. Part H Vol. 214 (2000), p.21.

Google Scholar

[9] I.C. Clarke: Eng. Med. Vol. 10 (1981), p.189.

Google Scholar

[10] H. MeKellop, I. Clarke, K. Markolf, H. Amstutz: J. Bio. Mater. Res. Vol. 15 (1981), p.619.

Google Scholar

[11] E.M. Hammerberg, Z. Wan, M. Dastane, L.D. Dorr: J. Arthr. Vol. 25 (6) (2010), p.839.

Google Scholar

[12] J. Livermore, D. Ilstrup, B. Morrey: J. Bone & Joint Surg. Vol. 72A (1990), p.518.

Google Scholar

[13] A. Borruto, I. Taraschi: Wear Vol. 184 (1995), p.119.

Google Scholar

[14] J.J. Williams, N. Chawla: Case Stud. Eng. Fail. Anal. Vol. (2014), p.45.

Google Scholar

[15] T. Hong, M. Nagumo: Corr. Sci. Vol. 39 (1997), p.1665.

Google Scholar

[16] E.F. Pieretti, E.J. Pessine, O.V. Correa, W. Rossi, M.D.M. Neves: J. Electrochem. Sci. Vol. 10 (2015), p.1221.

Google Scholar

[17] L. Cristofilini, P. Erani, T. Grupp, V. Jansson, M. Viceconti: Artificial Organs Vol. 31 (6) (2007), p.441.

Google Scholar

[18] E.F. Pieretti, M.D.M. Neves: Int. J. Electrochem. Sci. Vol 11 (2016), p.3532.

Google Scholar

[19] C.W. Forsthoefel, N.M. Brown, M.L. Barba: J. Orthop. Vol. 31 (14) (2017), p.561.

Google Scholar

[20] F. Liu, J. Fisher, Z. Jin: Tribol. Int. Vol. 63 (2013), p.105.

Google Scholar

[21] M. Baxmann, A.M. Pfaff, C. Schilling, T.M. Grupp, M.M. Morlock: Biotribol. Vol. 12 (2017), p.1.

Google Scholar