Influence of Glycerol Content on the Physic-Chemical and Mechanical Properties of Cassava Starch Films

Article Preview

Abstract:

The use of natural polymeric materials has been growing notably in order to replace packaging from non-renewable sources. In this sense, cassava starch is a very promising natural polymer for this purpose due to its ease of production, the low cost, besides being biodegradable. However, cassava starch biofilms when dried have a brittle character requiring the addition of a plasticizer. Thus, biofilms were synthesized based on cassava starch (3%) with different percentages of glycerol (5%, 10%, 20%, 40% and 50%) to evaluate changes in physic-chemical and mechanical properties. The results indicate that the increase in percentage of glycerol contributed directly to the increase of water vapor permeability while decreases the contact angle and modulus of elasticity of cassava starch films.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1012)

Pages:

57-61

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Garavand, M. Rouhi, S.H. Razavi, I. Cacciotti, R. Mohammadi:. International Journal of Biological Macromolecules, 104, parte A, (2017) pp.687-707.

DOI: 10.1016/j.ijbiomac.2017.06.093

Google Scholar

[2] J. Colivet, R.A. Carvalho: Industrial Crops and Products Vol. 95 (2017), p.599.

Google Scholar

[3] A.A. Al-Hassan, M.H. Norziah: Food Hydrocolloids Vol. 26 (1) (2012), p.108.

Google Scholar

[4] P. Zhang, Y. Zhao, Q, Shi: Carbohydr. Polym. Vol. 153 (2016), p.345.

Google Scholar

[5] M. García, A.N.E Zaritzky: Starch/Staerke Vol 52 (2000), p.6.

Google Scholar

[6] M. Ghasemlou, F. Khodaiyan, A. Oromiehie: Carbohydr. Polym. Vol 84 (2011), p.477.

Google Scholar

[7] M. Chiumarelli, M.D. Hubinger: Food Hydrocolloids Vol. 28(1) (2012), p.59.

Google Scholar

[8] ASTM E96/E96M-12. Standard test methods for water vapour transmission of materials. Annual Book of Standards (1993).

Google Scholar

[9] C.M. Jaramillo, P.G. Seligra, S. Goyanes, C. Bernal, L. Famá: Starch/Stärke Vol. 67 (2015), p.780.

DOI: 10.1002/star.201500033

Google Scholar

[10] L. Luchese, J.M. Frick, V.L. Patzer, J.C. Spada, I.C. Tessaro: Food Hydrocolloids Vol. 45 (2015), p.203.

DOI: 10.1016/j.foodhyd.2014.11.015

Google Scholar

[11] ASTM D882-91. Standard test methods for tensile properties of thin plastic sheeting. Annual Book of Standards. (1996).

Google Scholar

[12] F.M. Fakhouri, S.M. Martelli, T. Caon, J.I. Velasco, L.H.I. Mei: Postharvest Biology and Technology Vol. 109 (2015), p.57.

Google Scholar

[13] J. Osés, M. Fabregat-Vázquez, R. Pedroza-Islas, S.A. Tomás, A. Cruzorea, J.I. Maté: Journal of Food Engineering Vol. 92(1) (2009) p.56.

DOI: 10.1016/j.jfoodeng.2008.10.029

Google Scholar

[14] M.G.A. Vieira, M.A. Silva, L.O. Santos, M.M. Beppu: European Polymer Journal Vol. 47 (2011), p.254.

Google Scholar

[15] K. Abdullah, K. Talip: Carbohydrate Polymers Vol. 104 (2014), p.50.

Google Scholar

[16] C.C., Denardin, L.P.L Silva: Ciencia Rural Vol. 39 (3) (2009), p.945.

Google Scholar

[17] L.C. Cossolino, A.H. Pereira, Módulos Elásticos: Visão Geral e Métodos de Caracterização. Informativo Técnico Científico. Disponível em: <http://www.atcp.com.br/imagens/produtos/ sonelastic/artigos/RT03-ATCP.pdf> Acesso em 03 de dezembro de (2018).

Google Scholar

[18] A.L.M. Smits, P.H. Kruiskamp, J.J.G. Van Soest, J.F.G. Vliegenthart: NMR spectroscopy Vol. 53 (4) (2003), p.409.

Google Scholar