Evaluation of Low-Density Polyethylene Thermomechanical and Fractographic Behavior after Ultraviolet Radiation Exposure

Article Preview

Abstract:

Polyethylene (PE) has an exclusive set of properties, such as good toughness and mechanical resistance as well as high flexibility, and ease conformation. However, when exposed to degrading agents, such as heat, humidity and radiation, macromolecular changes can be observed and consequently affect the PE. This work evaluated for the first time the thermomechanical and fracture behavior of low-density polyethylene (LDPE) subjected to degradation at different times of exposure to ultraviolet (UV) radiation. The changes induced in the chemical structure and the highlighted behavior were investigated through thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier-transformed infrared spectroscopy (FTIR), reticulation content, tensile test, and scanning electron microscopy (SEM). The results suggest that UV radiation modify the failure of the polymer by reducing its crystallinity and dramatically increasing its degree of crosslinking. These modifications impair the LDPE mechanical performance as well as its thermal stability.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1012)

Pages:

73-78

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Niknezhad, A.I. Isayev: J. Appl. Polym. Sci. Vol. 129 (2013), p.263.

Google Scholar

[2] A.F.C. Becerra, J.R.M. D'Almeida: Polym. Polym. Compos Vol. 25 (2017), 327.

Google Scholar

[3] L.C. Mendes, E. S. Rufino, F. O. C. de Paula, A.C. Torres: Polym. Degrad. Stab. Vol. 79 (2003), p.371.

Google Scholar

[4] A. Fairbrother et al.: Polym. Degrad. Stab. Vol. 165 (2019), 153.

Google Scholar

[5] H.C. Hsueh et al.: Polym. Degrad. Stab. Vol. 174 (2020).

Google Scholar

[6] ASTM. G154 Standard Practice for Operating Fluorescent Ultraviolet ( UV ) Lamp Apparatus for Exposure of Nonmetallic Materials 1, (2014).

DOI: 10.1520/g0154-04

Google Scholar

[7] M.V Klein, T.E. Furtak: Optics. (Jonh Wiley and Sons, 1986).

Google Scholar

[8] ASTM D638 - 14 Standard Test Method for Tensile Properties of Plastics. (2014).

Google Scholar

[9] ASTM. ASTM D3417 - 99 Standard Test Method for Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry (DSC). (1999).

DOI: 10.1520/d3417-99

Google Scholar

[10] N.T. Dintcheva, F.P. La Mantia, V. Malatesta: Polym. Degrad. Stab. Vol. 94 (2009), p.162.

Google Scholar

[11] ASTM. ASTM D 2765-16 Standard Test Methods for Determination of Gel Content and Swell Ratio of Crosslinked Ethylene Plastics. (2016).

DOI: 10.1520/d2765-01

Google Scholar

[12] J.V. Gulmine, P.R. Janissek, H.M. Heise, L. Akcelrud: Polym. Degrad. Stab. Vol. 79 (2003),p.385.

Google Scholar

[13] F. Carrasco, P. Pagès, S. Pascual, X. Colom: Eur. Polym. J. Vol. 37 (2001), p.1457.

Google Scholar

[14] F.C.F. Valim, D.C. Silveira, M.L. Costa, M.S. Pereira, E.C. Botelho: Rev. Mater. Vol. 20 (2015), p.852.

Google Scholar

[15] L. Santonja Blasco et al.: J. Appl. Polym. Sci. Vol.134 (2017), p.1.

Google Scholar

[16] S.M. Tamboli, S.T. Mhaske, D.D. Kale: Indian J. Chem. Technol. Vol. 11 (2004) , p.853.

Google Scholar

[17] W.A. Lopes, M. Fascio: Quim. Nova Vol. 27 (2004), 670.

Google Scholar

[18] Z. Oluz, T. Tinçer: J. Appl. Polym. Sci. Vol. 133 (17) (2016). doi.org/10.1002/app.43354.

Google Scholar

[19] G.J.M. Fechine, J.A.B, Santos, M.S. Rabello: Quim. Nova Vol. 29 (2006), p.674.

Google Scholar

[20] T. Ojeda et al.: Polym. Degrad. Stab. Vol. 96 (2011), p.703.

Google Scholar

[21] B. Gewert, M.M. Plassmann, M. Macleod: Env.. Sci. Proc. Impac. 17 (2015), p.1513–1521.

Google Scholar