[1]
K. Lu, Stabilizing nanostructures in metals using grain and twin boundary architectures, Nat. Rev. Mater. 1(5) (2016) 16-19.
DOI: 10.1038/natrevmats.2016.19
Google Scholar
[2]
M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater Sci. 51(4) (2006) 427-556.
Google Scholar
[3]
T. Leitner, A. Hohenwarter, R. Pippan, Revisiting fatigue crack growth in various grain size regimes of Ni, Mater. Sci. Eng., A 646 (2015) 294-305.
DOI: 10.1016/j.msea.2015.08.071
Google Scholar
[4]
A. Vinogradov, Fatigue limit and crack growth in ultra-fine grain metals produced by severe plastic deformation, J. Mater. Sci. 42(5) (2006) 1797-1808.
DOI: 10.1007/s10853-006-0973-z
Google Scholar
[5]
T. Leitner, A. Hohenwarter, W. Ochensberger, R. Pippan, Fatigue crack growth anisotropy in ultrafine-grained iron, Acta Mater. 126 (2017) 154-165.
DOI: 10.1016/j.actamat.2016.12.059
Google Scholar
[6]
T. Leitner, G. Trummer, R. Pippan, A. Hohenwarter, Influence of severe plastic deformation and specimen orientation on the fatigue crack propagation behavior of a pearlitic steel, Mater. Sci. Eng., A 710 (2018) 260-270.
DOI: 10.1016/j.msea.2017.10.040
Google Scholar
[7]
M. Arzaghi, C. Sarrazin-Baudoux, J. Petit, Fatigue Crack Growth in Ultrafine-Grained Copper Obtained by ECAP, Adv. Mater. Res. 891-892 (2014) 1099-1104.
DOI: 10.4028/www.scientific.net/amr.891-892.1099
Google Scholar
[8]
J. Horky, G. Khatibi, B. Weiss, M.J. Zehetbauer, Role of structural parameters of ultra-fine grained Cu for its fatigue and crack growth behaviour, J. Alloys Compd. 509 (2011) S323-S327.
DOI: 10.1016/j.jallcom.2011.01.088
Google Scholar
[9]
J. Horky, G. Khatibi, D. Setman, B. Weiss, M.J. Zehetbauer, Effect of microstructural stability on fatigue crack growth behaviour of nanostructured Cu, Mech. Mater. 67 (2013) 38-45.
DOI: 10.1016/j.mechmat.2013.07.008
Google Scholar
[10]
L. Collini, Fatigue crack growth resistance of ECAPed ultrafine-grained copper, Eng. Fract. Mech. 77(6) (2010) 1001-1011.
DOI: 10.1016/j.engfracmech.2010.02.011
Google Scholar
[11]
American Society of Testing and Materials, ASTM E647-15, Standard Test Method for Measurement of Fatigue Crack Growth Rates, Philadelphia PA, (2015).
Google Scholar
[12]
S. Qu, Z. You, R. Gu, J.T. Wang, Fracture toughness anisotropy of ultrafine-grained pure copper processed by equal channel angular pressing, Mater. Sci. Eng., A, Submitted.
DOI: 10.1016/j.msea.2020.139260
Google Scholar
[13]
P. Cavaliere, Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals, Int. J. Fatigue 31(10) (2009) 1476-1489.
DOI: 10.1016/j.ijfatigue.2009.05.004
Google Scholar
[14]
M. Goto, K. Morita, J. Kitamura, M. Baba, S.-Z. Han, J.-H. Ahn, S. Kim, Fatigue-induced damage and crack growth of Cu processed by ECAP, Mod. Phys. Lett. B 29(06n07) (2015).
DOI: 10.1142/s021798491540028x
Google Scholar
[15]
M. Goto, S.Z. Han, T. Yamamoto, J. Kitamura, J.H. Ahn, T. Yakushiji, S.S. Kim, J. Lee, Formation mechanism of inclined fatigue-cracks in ultrafine-grained Cu processed by equal channel angular pressing, Int. J. Fatigue 92 (2016) 577-587.
DOI: 10.1016/j.ijfatigue.2016.02.006
Google Scholar
[16]
M.W. Kapp, T. Kremmer, C. Motz, B. Yang, R. Pippan, Structural instabilities during cyclic loading of ultrafine-grained copper studied with micro bending experiments, Acta Mater. 125 (2017) 351-358.
DOI: 10.1016/j.actamat.2016.11.040
Google Scholar
[17]
S.Z. Han, M. Goto, J.-H. Ahn, S.H. Lim, S. Kim, J. Lee, Grain growth in ultrafine grain sized copper during cyclic deformation, J. Alloys Compd. 615 (2014) S587-S589.
DOI: 10.1016/j.jallcom.2013.12.004
Google Scholar