Near-Threshold Fatigue Crack Growth Behavior of ECAPed Ultrafine-Grained Copper

Article Preview

Abstract:

Fatigue crack growth resistance of ultrafine grained Cu processed by equal channel angular pressing (ECAP) was investigated. Particular emphasis was devoted to the effects of microstructure evolution on fatigue crack growth in the near-threshold regime. The ultrafine grained Cu exhibits a lower fatigue threshold than coarse-grained Cu at stress ratios of 0.1 and 0.7. Fatigue induced coarsening of the UFG structure near the fatigue crack and intergranular fatigue crack growth are observed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

1193-1198

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Lu, Stabilizing nanostructures in metals using grain and twin boundary architectures, Nat. Rev. Mater. 1(5) (2016) 16-19.

DOI: 10.1038/natrevmats.2016.19

Google Scholar

[2] M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater Sci. 51(4) (2006) 427-556.

Google Scholar

[3] T. Leitner, A. Hohenwarter, R. Pippan, Revisiting fatigue crack growth in various grain size regimes of Ni, Mater. Sci. Eng., A 646 (2015) 294-305.

DOI: 10.1016/j.msea.2015.08.071

Google Scholar

[4] A. Vinogradov, Fatigue limit and crack growth in ultra-fine grain metals produced by severe plastic deformation, J. Mater. Sci. 42(5) (2006) 1797-1808.

DOI: 10.1007/s10853-006-0973-z

Google Scholar

[5] T. Leitner, A. Hohenwarter, W. Ochensberger, R. Pippan, Fatigue crack growth anisotropy in ultrafine-grained iron, Acta Mater. 126 (2017) 154-165.

DOI: 10.1016/j.actamat.2016.12.059

Google Scholar

[6] T. Leitner, G. Trummer, R. Pippan, A. Hohenwarter, Influence of severe plastic deformation and specimen orientation on the fatigue crack propagation behavior of a pearlitic steel, Mater. Sci. Eng., A 710 (2018) 260-270.

DOI: 10.1016/j.msea.2017.10.040

Google Scholar

[7] M. Arzaghi, C. Sarrazin-Baudoux, J. Petit, Fatigue Crack Growth in Ultrafine-Grained Copper Obtained by ECAP, Adv. Mater. Res. 891-892 (2014) 1099-1104.

DOI: 10.4028/www.scientific.net/amr.891-892.1099

Google Scholar

[8] J. Horky, G. Khatibi, B. Weiss, M.J. Zehetbauer, Role of structural parameters of ultra-fine grained Cu for its fatigue and crack growth behaviour, J. Alloys Compd. 509 (2011) S323-S327.

DOI: 10.1016/j.jallcom.2011.01.088

Google Scholar

[9] J. Horky, G. Khatibi, D. Setman, B. Weiss, M.J. Zehetbauer, Effect of microstructural stability on fatigue crack growth behaviour of nanostructured Cu, Mech. Mater. 67 (2013) 38-45.

DOI: 10.1016/j.mechmat.2013.07.008

Google Scholar

[10] L. Collini, Fatigue crack growth resistance of ECAPed ultrafine-grained copper, Eng. Fract. Mech. 77(6) (2010) 1001-1011.

DOI: 10.1016/j.engfracmech.2010.02.011

Google Scholar

[11] American Society of Testing and Materials, ASTM E647-15, Standard Test Method for Measurement of Fatigue Crack Growth Rates, Philadelphia PA, (2015).

Google Scholar

[12] S. Qu, Z. You, R. Gu, J.T. Wang, Fracture toughness anisotropy of ultrafine-grained pure copper processed by equal channel angular pressing, Mater. Sci. Eng., A, Submitted.

DOI: 10.1016/j.msea.2020.139260

Google Scholar

[13] P. Cavaliere, Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals, Int. J. Fatigue 31(10) (2009) 1476-1489.

DOI: 10.1016/j.ijfatigue.2009.05.004

Google Scholar

[14] M. Goto, K. Morita, J. Kitamura, M. Baba, S.-Z. Han, J.-H. Ahn, S. Kim, Fatigue-induced damage and crack growth of Cu processed by ECAP, Mod. Phys. Lett. B 29(06n07) (2015).

DOI: 10.1142/s021798491540028x

Google Scholar

[15] M. Goto, S.Z. Han, T. Yamamoto, J. Kitamura, J.H. Ahn, T. Yakushiji, S.S. Kim, J. Lee, Formation mechanism of inclined fatigue-cracks in ultrafine-grained Cu processed by equal channel angular pressing, Int. J. Fatigue 92 (2016) 577-587.

DOI: 10.1016/j.ijfatigue.2016.02.006

Google Scholar

[16] M.W. Kapp, T. Kremmer, C. Motz, B. Yang, R. Pippan, Structural instabilities during cyclic loading of ultrafine-grained copper studied with micro bending experiments, Acta Mater. 125 (2017) 351-358.

DOI: 10.1016/j.actamat.2016.11.040

Google Scholar

[17] S.Z. Han, M. Goto, J.-H. Ahn, S.H. Lim, S. Kim, J. Lee, Grain growth in ultrafine grain sized copper during cyclic deformation, J. Alloys Compd. 615 (2014) S587-S589.

DOI: 10.1016/j.jallcom.2013.12.004

Google Scholar