Microstructure Evolution during Multiaxial Processing of TA6V

Article Preview

Abstract:

Subtransus multiaxial hot forging of α+β Ti-6Al-4V (TA6V) titanium alloy with a β-transformed microstructure aims at obtaining an equiaxed microstructure through α phase globularization. The activation of mechanisms involved in microstructural evolution, such as globularization, depends on parameters such as time, temperature, strain and strain rate. It is also sensitive to the crystallographic orientation of α-lamellae. As a result, multiaxial processing of titanium alloys leads to significant microstructural gradients depending on thermomechanical conditions and initial microstructure. In this study, we focused on the effect of complex thermomechanical paths on microstructural evolutions. Thanks to the MaxStrain Gleeble device, we were able to reproduce such thermomechanical treatments to β-transformed TA6V samples. Stress strain fields obtained with finite element modelling of the MaxStrain test were compared to experimental microstructure gradients. This experimental method offers the opportunity to get closer to industrial open die forging conditions.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

1211-1217

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. G. Fan et al., « Acceleration of globularization during interrupted compression of a two-phase titanium alloy », Mater. Sci. Eng. A, vol. 720, p.214‑224, mars 2018,.

DOI: 10.1016/j.msea.2018.02.026

Google Scholar

[2] T. R. Bieler et S. L. Semiatin, « The origins of heterogeneous deformation during primary hot working of Ti–6Al–4V », Int. J. Plast., vol. 18, no 9, p.1165‑1189, sept. 2002,.

DOI: 10.1016/s0749-6419(01)00057-2

Google Scholar

[3] J. H. Kim, S. L. Semiatin, et C. S. Lee, « Constitutive analysis of the high-temperature deformation of Ti–6Al–4V with a transformed microstructure », Acta Mater., vol. 51, no 18, p.5613‑5626, oct. 2003,.

DOI: 10.1016/s1359-6454(03)00426-9

Google Scholar

[4] Y. Chong, T. Bhattacharjee, R. Gholizadeh, J. Yi, et N. Tsuji, « Investigation on the hot deformation behaviors and globularization mechanisms of lamellar Ti–6Al–4V alloy within a wide range of deformation temperatures », Materialia, vol. 8, p.100480, déc. 2019,.

DOI: 10.1016/j.mtla.2019.100480

Google Scholar

[5] S. Roy et S. Suwas, « The influence of temperature and strain rate on the deformation response and microstructural evolution during hot compression of a titanium alloy Ti–6Al–4V–0.1B », J. Alloys Compd., vol. 548, p.110‑125, janv. 2013,.

DOI: 10.1016/j.jallcom.2012.08.123

Google Scholar

[6] S. L. Semiatin, V. Seetharaman, et I. Weiss, « Flow behavior and globularization kinetics during hot working of Ti–6Al–4V with a colony alpha microstructure », Mater. Sci. Eng. A, vol. 263, no 2, p.257‑271, mai 1999,.

DOI: 10.1016/s0921-5093(98)01156-3

Google Scholar

[7] Warchomicka, Canelo-Yubero, Zehetner, Requena, et Stark, « In-Situ Synchrotron X-Ray Diffraction of Ti-6Al-4V During Thermomechanical Treatment in the Beta Field », Metals, vol. 9, no 8, p.862, août 2019,.

DOI: 10.3390/met9080862

Google Scholar

[8] I. Weiss, F. H. Froes, D. Eylon, et G. E. Welsch, « Modification of alpha morphology in Ti-6Al-4V by thermomechanical processing », Metall. Trans. A, vol. 17, no 11, p.1935‑1947, nov. 1986,.

DOI: 10.1007/bf02644991

Google Scholar

[9] Z. X. Zhang, S. J. Qu, A. H. Feng, X. Hu, et J. Shen, « Microstructural mechanisms during multidirectional isothermal forging of as-cast Ti-6Al-4V alloy with an initial lamellar microstructure », J. Alloys Compd., vol. 773, p.277‑287, janv. 2019,.

DOI: 10.1016/j.jallcom.2018.09.220

Google Scholar

[10] A. A. Korshunov et al., « Grain-structure refinement in titanium alloy under different loading schedules », J. Mater. Sci., vol. 31, no 17, p.4635–4639, (1996).

DOI: 10.1007/bf00366363

Google Scholar

[11] L. Germain, N. Gey, M. Humbert, P. Bocher, et M. Jahazi, « Analysis of sharp microtexture heterogeneities in a bimodal IMI 834 billet », Acta Mater., vol. 53, no 13, p.3535‑3543, août 2005,.

DOI: 10.1016/j.actamat.2005.03.043

Google Scholar

[12] N. Gey, P. Bocher, E. Uta, L. Germain, et M. Humbert, « Texture and microtexture variations in a near-α titanium forged disk of bimodal microstructure », Acta Mater., vol. 60, no 6, p.2647‑2655, avr. 2012,.

DOI: 10.1016/j.actamat.2012.01.031

Google Scholar

[13] N. Gey, M. Humbert, M. J. Philippe, et Y. Combres, « Modeling the transformation texture of Ti-64 sheets after rolling in the β-field », Mater. Sci. Eng. A, vol. 230, no 1‑2, p.68–74, (1997).

DOI: 10.1016/s0921-5093(97)80111-6

Google Scholar

[14] N. Gey, M. Humbert, M. J. Philippe, et Y. Combres, « Investigation of the α- and β- texture evolution of hot rolled Ti-64 products », Mater. Sci. Eng. A, vol. 219, no 1, p.80‑88, nov. 1996,.

DOI: 10.1016/s0921-5093(96)10388-9

Google Scholar

[15] F. Montheillet, « Métallurgie en mise en forme à chaud », Tech. Ing. Matér. Métalliques, no M3031, (2009).

DOI: 10.51257/a-v1-m3031

Google Scholar

[16] H. Geijselaers, C. Wang, A. Miroux, et V. Recina, « Use of Gleeble MAXStrain unit for study of damage development in hot forging », p.3, (2016).

Google Scholar

[17] C. Zhang, M. Bellet, M. Bobadilla, H. Shen, et B. Liu, « A Coupled Electrical–Thermal–Mechanical Modeling of Gleeble Tensile Tests for Ultra-High-Strength (UHS) Steel at a High Temperature », Metall. Mater. Trans. A, vol. 41, no 9, p.2304‑2317, sept. 2010,.

DOI: 10.1007/s11661-010-0310-7

Google Scholar

[18] R. Castro et L. Seraphin, « Contribution à l'étude métallographique et structurale de l'alliage de titane ta6v », Mém. Sci. Rev. Métallurgique, vol. 12, p.1025–1058, (1966).

Google Scholar

[19] J. Xu, W. Zeng, D. Zhou, H. Ma, S. He, et W. Chen, « Analysis of flow softening during hot deformation of Ti-17 alloy with the lamellar structure », J. Alloys Compd., vol. 767, p.285‑292, oct. 2018,.

DOI: 10.1016/j.jallcom.2018.07.106

Google Scholar

[20] R. Miller, « Flow softening during hot working of Ti-6Al-4V with a lamellar colony microstructure », Scr. Mater., vol. 40, no 12, p.1387‑1393, mai 1999,.

DOI: 10.1016/s1359-6462(99)00061-5

Google Scholar

[21] S. L. Semiatin et G. D. Lahoti, « Deformation and unstable flow in hot forging of Ti-6Ai-2Sn-4Zr-2Mo-0.1Si », Metall. Trans. A, vol. 12, no 10, p.1705‑1717, oct. 1981,.

DOI: 10.1007/bf02643753

Google Scholar

[22] A. Colin, « Hétérogénéités de déformation au cours du forgeage d'aubes en alliage de titane TA6V », thesis, Saint-Etienne, EMSE, (2007).

Google Scholar