[1]
S. Komura, Z. Horita, M. Nemoto, T.G. Langdon, Influence of stacking fault energy on microstructural development in equal-channel angular pressing, Journal of Materials Research 14 (1999) 4044-4050.
DOI: 10.1557/jmr.1999.0546
Google Scholar
[2]
X. An, Q. Lin, S. Qu, G. Yang, S.Wu, Z.F. Zhang, Influence of stacking-fault energy on the accommodation of severe shear strain in Cu-Al alloys during equal-channel angular pressing, Journal of Materials Research 24 (2009) 3636-3646.
DOI: 10.1557/jmr.2009.0426
Google Scholar
[3]
X.H. An, Q.Y Lin, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, T.G. Langdon, Significance of stacking fault energy on microstructural evolution in Cu and Cu–Al alloys processed by high-pressure torsion, Philosophical Magazine 91 (2011) 3307-3326.
DOI: 10.1080/14786435.2011.577757
Google Scholar
[4]
F. Liu, H. Yuan, J. Yin, J.T. Wang, Influence of stacking fault energy and temperature on microstructures and mechanical properties of fcc pure metals processed by equal-channel angular pressing, Materials Science & Engineering A 662 (2016) 578-587.
DOI: 10.1016/j.msea.2016.03.022
Google Scholar
[5]
F. Liu, T. Fa, P.H. Chen, J.T. Wang, Steady-state characteristics of fcc pure metals processed by severe plastic deformation: experiments and modelling, Philosophical Magazine 100 (2020) 62-83.
DOI: 10.1080/14786435.2019.1671621
Google Scholar
[6]
I.R. Harris, I.L. Dillamore, R.E. Smallman, B.E.P. Beeston, The influence of b-band structure on stacking-fault energy, Philosophical magazine 14 (1966) 325-333.
DOI: 10.1080/14786436608219015
Google Scholar
[7]
F.I. Grace, Influence of stacking fault energy on dislocation configurations in shock-deformed metals, Metallography 3 (1970) 89-98.
DOI: 10.1016/0026-0800(70)90008-x
Google Scholar
[8]
T.H. Steffens, C.H. Schwink, Transmission electron microscopy study of the stacking-fault energy and dislocation structure in CuMn alloys, Philosophical Magazine 56 (1987) 161-173.
DOI: 10.1080/01418618708205159
Google Scholar
[9]
Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T. G. Langdon, Principle of Equal-Channel Angular Pressing for the Processing of Ultra-Fine Grained Materials, Scripta Materialia 35 (1996) 143-146.
DOI: 10.1016/1359-6462(96)00107-8
Google Scholar
[10]
Y. T. Zhu, V. Varyukhin, Nanostructured Materials by High-Pressure Severe Plastic Deformation, NATO science series, (2006).
DOI: 10.1007/1-4020-3923-9
Google Scholar
[11]
A.J. Scwartz, M. Kumar, D.P. Field, B.L. Adams, Electron Back scatter Diffraction in Materials Science, Kluwer Academic/Plenum Publishers, New York, (2000).
Google Scholar
[12]
G.K. Williamson , R.E. Smallman, Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum, Philosophical magazine (1955) 34-46.
DOI: 10.1080/14786435608238074
Google Scholar
[13]
H. Shahmir, T. Mousavi, J. Hec, Z. Lu, M. Kawasaki, T.G. Langdon, Microstructure and properties of a CoCrFeNiMn high-entropy alloy processed by equal-channel angular pressing, Materials Science & Engineering A (2017) 411-419.
DOI: 10.1016/j.msea.2017.08.083
Google Scholar
[14]
D.A. Hughes, N. Hansen, High angle boundaries formed by grain subdivision mechanisms, Acta Materialia 45 (1997) 3871-3886.
DOI: 10.1016/s1359-6454(97)00027-x
Google Scholar
[15]
M.A. Mayers, K.K. Chawla, Mechanical behavior of materials, Prentice Hall, New Jersey, (1999).
Google Scholar