[1]
G. S. Was, R. M. Pelloux, The effect of shot peening on the fatigue behavior of alloy 7075-T6, Metall. Mater. Trans. A, 10 (1979) 656-658.
DOI: 10.1007/bf02658332
Google Scholar
[2]
Z. Dingquan, X. Kewei, H. Jiawen, Aspects of the residual stress field at a notch and its effect on fatigue, Mater. Sci. Eng. A, 136 (1991) 79-83.
DOI: 10.1016/0921-5093(91)90443-q
Google Scholar
[3]
H. Ishigami, K. Matsui, Y. Jin, K. Ando, Stress double shot peening to improve residual stress distribution (The effects of pre-tensile stress and peening angle on residual stress distribution), Trans. Jpn. Soc. Mech. Eng., 66 (2000) 1547-1554. [in Japanese].
DOI: 10.1299/kikaia.66.1547
Google Scholar
[4]
K. Zhan, C. H. Jiang, V.Ji, Uniformity of residual stress distribution on the surface of S30432 austenitic stainless steel by different shot peening processes, Mater. Lett., 99 (2013) 61-64.
DOI: 10.1016/j.matlet.2012.08.147
Google Scholar
[5]
S. Bagherifard, I. Fernandez-Pariente, R. Ghelichi, M. Guagliano, Effect of severe shot peening on microstructure and fatigue strength of cast iron, Int. J. Fatigue, 65 (2014) 64-70.
DOI: 10.1016/j.ijfatigue.2013.08.022
Google Scholar
[6]
J. P. Fuhr, M. Basha, M. Wollmann. L. Wagner, Coverage and peening angle effects in shot peening on HCF performance of Ti-6Al-4V, Procedia Eng., 213 (2018) 682-690.
DOI: 10.1016/j.proeng.2018.02.064
Google Scholar
[7]
C. Wang, Y. Lai, L. Wang, C. Wang, Dislocation-based study on the influences of shot peening on fatigue resistance, Surf. Coat. Technol., 383 (2020) 125247.
DOI: 10.1016/j.surfcoat.2019.125247
Google Scholar
[8]
I. V. Alexandrov, R. Z. Valiev, Developing of SPD processing and enhanced properties in bulk nanostructured metals, Scr. Mater. 44 (2001) 1605-1608.
DOI: 10.1016/s1359-6462(01)00783-7
Google Scholar
[9]
M. Umemoto, Y. Todaka, K. Tsuchiya, Formation of nanocrystalline structure in steels by air blast shot peening, Mater. Trans., 44 (2003) 1488-1493.
DOI: 10.2320/matertrans.44.1488
Google Scholar
[10]
H. Sato, T. Nishiura, E. Miura-Fujiwara, Y. Watanabe, Phase transformation in Fe alloys induced by surface treatment, Mater. Sci. Forum, 706-709 (2012) 1996-2001.
DOI: 10.4028/www.scientific.net/msf.706-709.1996
Google Scholar
[11]
H. Sato, A. Namba, M. Okada, Y. Watanabe, Temperature dependence of reverse transformation induced by shot-peening for SUS 304 austenitic stainless steel, Mater. Today: Proc., 2 (2015) S707-S710.
DOI: 10.1016/j.matpr.2015.07.380
Google Scholar
[12]
N. Mitsuishi, E. Miura-Fujiwara, M. Yamada, T. Chiba, H. Sato, Y. Watanabe, M. Ito, S. Takashima, M. Nakai, T. Akahori, M. Tanaka, M. Niinomi, T. Takeuchi, Application of atmospheric-pressure plasma treatment to coat Ti-alloyorthodontic wire with white oxide layer, Jpn. J. Appl. Phys., 59 (2020) SAAC09 (7 pages).
DOI: 10.7567/1347-4065/ab43a9
Google Scholar
[13]
J. R. Patel, M. Cohen, Criterion for the action of applied stress in the martensitic transformation, Acta Metall., 1 (1953) 531-538.
DOI: 10.1016/0001-6160(53)90083-2
Google Scholar
[14]
A. Shibata, T. Murakami, S. Morito, T. Furuhara, T. Maki, The origin of midrib in lenticular martensite, Mater. Trans., 49 (2008) 1242-1248.
DOI: 10.2320/matertrans.mra2007296
Google Scholar