Effects of Peening Direction on Reverse Transformation Induced by Shot-Peening for Fe-33%Ni Alloy

Article Preview

Abstract:

Effects of peening direction on the reverse transformation induced by the shot-peening for the Fe-33 mass%Ni alloy with large amount of martensite (α’) are investigated. When the angle between the peened surface and the peening direction (Hereafter, peening angle) is 90 o, the reverse transformation occurs and subsequently martensitic transformation is induced by the shot-peening. On the other hand, in case of the peening angle of 30 o, only reverse transformation occurs. Furthermore, the volume fraction of austenite (γ) in the specimen after the shot-peening increases as the peening angle decreases. This means that the reverse transformation induced by the shot-peening is enhanced by decreasing the peening angle. Moreover, residual compressive stress around the peened surface increases as the peening angle decreases. Since the hydrostatic compressive stress decreases phase transformation temperature, the phase transformation temperature around the peened surface would be decreased by the shot-peening. Therefore, the reverse transformation behavior depending on the peening angle can be explained by the residual compressive stress due to the shot-peening.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

1252-1257

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. S. Was, R. M. Pelloux, The effect of shot peening on the fatigue behavior of alloy 7075-T6, Metall. Mater. Trans. A, 10 (1979) 656-658.

DOI: 10.1007/bf02658332

Google Scholar

[2] Z. Dingquan, X. Kewei, H. Jiawen, Aspects of the residual stress field at a notch and its effect on fatigue, Mater. Sci. Eng. A, 136 (1991) 79-83.

DOI: 10.1016/0921-5093(91)90443-q

Google Scholar

[3] H. Ishigami, K. Matsui, Y. Jin, K. Ando, Stress double shot peening to improve residual stress distribution (The effects of pre-tensile stress and peening angle on residual stress distribution), Trans. Jpn. Soc. Mech. Eng., 66 (2000) 1547-1554. [in Japanese].

DOI: 10.1299/kikaia.66.1547

Google Scholar

[4] K. Zhan, C. H. Jiang, V.Ji, Uniformity of residual stress distribution on the surface of S30432 austenitic stainless steel by different shot peening processes, Mater. Lett., 99 (2013) 61-64.

DOI: 10.1016/j.matlet.2012.08.147

Google Scholar

[5] S. Bagherifard, I. Fernandez-Pariente, R. Ghelichi, M. Guagliano, Effect of severe shot peening on microstructure and fatigue strength of cast iron, Int. J. Fatigue, 65 (2014) 64-70.

DOI: 10.1016/j.ijfatigue.2013.08.022

Google Scholar

[6] J. P. Fuhr, M. Basha, M. Wollmann. L. Wagner, Coverage and peening angle effects in shot peening on HCF performance of Ti-6Al-4V, Procedia Eng., 213 (2018) 682-690.

DOI: 10.1016/j.proeng.2018.02.064

Google Scholar

[7] C. Wang, Y. Lai, L. Wang, C. Wang, Dislocation-based study on the influences of shot peening on fatigue resistance, Surf. Coat. Technol., 383 (2020) 125247.

DOI: 10.1016/j.surfcoat.2019.125247

Google Scholar

[8] I. V. Alexandrov, R. Z. Valiev, Developing of SPD processing and enhanced properties in bulk nanostructured metals, Scr. Mater. 44 (2001) 1605-1608.

DOI: 10.1016/s1359-6462(01)00783-7

Google Scholar

[9] M. Umemoto, Y. Todaka, K. Tsuchiya, Formation of nanocrystalline structure in steels by air blast shot peening, Mater. Trans., 44 (2003) 1488-1493.

DOI: 10.2320/matertrans.44.1488

Google Scholar

[10] H. Sato, T. Nishiura, E. Miura-Fujiwara, Y. Watanabe, Phase transformation in Fe alloys induced by surface treatment, Mater. Sci. Forum, 706-709 (2012) 1996-2001.

DOI: 10.4028/www.scientific.net/msf.706-709.1996

Google Scholar

[11] H. Sato, A. Namba, M. Okada, Y. Watanabe, Temperature dependence of reverse transformation induced by shot-peening for SUS 304 austenitic stainless steel, Mater. Today: Proc., 2 (2015) S707-S710.

DOI: 10.1016/j.matpr.2015.07.380

Google Scholar

[12] N. Mitsuishi, E. Miura-Fujiwara, M. Yamada, T. Chiba, H. Sato, Y. Watanabe, M. Ito, S. Takashima, M. Nakai, T. Akahori, M. Tanaka, M. Niinomi, T. Takeuchi, Application of atmospheric-pressure plasma treatment to coat Ti-alloyorthodontic wire with white oxide layer, Jpn. J. Appl. Phys., 59 (2020) SAAC09 (7 pages).

DOI: 10.7567/1347-4065/ab43a9

Google Scholar

[13] J. R. Patel, M. Cohen, Criterion for the action of applied stress in the martensitic transformation, Acta Metall., 1 (1953) 531-538.

DOI: 10.1016/0001-6160(53)90083-2

Google Scholar

[14] A. Shibata, T. Murakami, S. Morito, T. Furuhara, T. Maki, The origin of midrib in lenticular martensite, Mater. Trans., 49 (2008) 1242-1248.

DOI: 10.2320/matertrans.mra2007296

Google Scholar