Non-Parametric Comparison of Crystallographic Orientation Distributions

Article Preview

Abstract:

Revisiting a spiral design for X-ray pole figure measurementsand a symbolic definition of a cumulative crystallographic orientation distributiona one-dimensional deterministic approximately uniform sequential design is appliedto evaluate and cumulate a given orientation density function resulting in a properly definedcumulative crystallographic orientation distribution.It provides a complementary means to compare distributionsin terms of graphs and the Kolomogorov-Smirnov distance.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] A. Justel, D. Peña, R. Zamar, A multivariate Kolmogorov­Smirnov test of goodness of fit, Statis­ tics & Probability Letters 35 (1997) 251-259.

DOI: 10.1016/s0167-7152(97)00020-5

Google Scholar

[2] H. Neff, Ein neues Zählrohrgoniometer für die Texturbestimmun an Blechen, Z. Metallkde. 47(9) (1956) 646-649.

DOI: 10.1515/ijmr-1956-470907

Google Scholar

[3] L.S. Tóth, P. van Houtte, Discretization techniques for orientation distribution functions, Textures and Microstructures 19 (1992) 229-244.

DOI: 10.1155/tsm.19.229

Google Scholar

[4] R. Bauer, Distribution of points on a sphere with application to star catalogs, Journal of Guidance, Control, and Dynamics 23 (2000) 130-137.

DOI: 10.2514/2.4497

Google Scholar

[5] C. Hüttig, K. Stemmer, The spiral grid: A new approach to discretize the sphere and its application to mantle convection, Geochem. Geophys. Geosyst. 9 (2008).

DOI: 10.1029/2007gc001581

Google Scholar

[6] C.G. Koay, Analytically exact spiral scheme for generating uniformly distributed points on the unit sphere, J. Comput. Sci. 2 (2011) 88-91.

DOI: 10.1016/j.jocs.2010.12.003

Google Scholar

[7] C.G. Koay, A simple scheme for generating nearly uniform distribution of antipodally symmetric points on the unit sphere, J. Comput. Sci. 2 (2011) 377-381.

DOI: 10.1016/j.jocs.2011.06.007

Google Scholar

[8] T. Lychagina, D. Nikolayev, Quantitative comparison of measured crystallographic texture, J. Appl. Cryst. 49 (2016) 1290-1299.

DOI: 10.1107/s1600576716009730

Google Scholar

[9] L. Meister, H. Schaeben, A concise quaternion geometry of rotations, Math. Meth. Appl. Sci. 28 (2005) 101-126.

DOI: 10.1002/mma.560

Google Scholar

[10] A. Novelia, O.M. O'Reilly, On geodesics of the roation group SO(3), Regular and Chaotic Dy­ namics 20 (2015) 729-738.

DOI: 10.1134/s1560354715060088

Google Scholar

[11] D.W. Lyons, An elementary introduction to the Hopf fibration, Mathematics Magazine 76 (2003) 87-98.

DOI: 10.1080/0025570x.2003.11953158

Google Scholar

[12] A. Yershova, S.M. LaValle, J.C. Mitchell, J.C., Generating uniform incremental grids on SO(3) using the Hopf fibration, The International Journal of Robotics Research 29 (2010) 801-812.

DOI: 10.1177/0278364909352700

Google Scholar