[1]
A. Luo, Recent magnesium alloy development for elevated temperature applications, Int. Mater. Rev. 49 (2013) 13-30.
Google Scholar
[2]
B. Shia, R. Chena and W. Kea, Influence of grain size on the tensile ductility and deformation modes of rolled Mg–1.02 wt.% Zn alloy, J. Magnesium Alloys 1 (2013) 210-216.
DOI: 10.1016/j.jma.2013.09.001
Google Scholar
[3]
F. Kabirian and R. Mahmudi, Effects of zirconium additions on the microstructure of as-cast and aged AZ91 magnesium alloy, Adv. Eng. Mater. 11 (2009) 189-193.
DOI: 10.1002/adem.200800223
Google Scholar
[4]
Q. Gao, S. Wu, S. Lü, X. Xiong, R. Du and P. An, Effects of ultrasonic vibration treatment on particles distribution of TiB2 particles reinforced aluminum composites, Mater. Sci. Eng. A 680 (2017) 437-443.
DOI: 10.1016/j.msea.2016.10.103
Google Scholar
[5]
U. Aybarc, H. Yavuz, D. Dispinar and M. O. Seydibeyoglu, The use of stirring methods for the production of SiC-reinforced aluminum matrix composite and validation via simulation studies, Int. J. Metalcast. 13 (2019) 190-200.
DOI: 10.1007/s40962-018-0250-3
Google Scholar
[6]
D. Li, H.S. Xue and G. Yang, Microstructure and mechanical properties of Mg–6Zn–0.5Y magnesium alloy prepared with ultrasonic treatment, Rare Met. 36 (2017) 622-626.
DOI: 10.1007/s12598-015-0553-y
Google Scholar
[7]
N. Srivastava and G. Chaudhari, Microstructural evolution and mechanical behavior of ultrasonically synthesized Al6061-nano alumina composites, Mater. Sci. Eng. A 724 (2018) 199-207.
DOI: 10.1016/j.msea.2018.03.092
Google Scholar
[8]
X. Liu, Y. Osawa, S. Takamori and T. Mukai, Microstructure and mechanical properties of AZ91 alloy produced with ultrasonic vibration, Mater. Sci. Eng. A 487 (2008) 120-123.
DOI: 10.1016/j.msea.2007.09.071
Google Scholar
[9]
Y.J. Chen, W.N. Hsu and J.R. Shih, The effect of ultrasonic treatment on microstructural and mechanical properties of cast magnesium alloys, Mater. Trans. 50 (2009) 401-408.
DOI: 10.2320/matertrans.mer2008273
Google Scholar
[10]
G. I. Eskin and D. G. Eskin, Ultrasonic treatment of light alloy melts, second ed., CRC Press/Taylor & Francis Group, Boca Raton, (2017).
Google Scholar
[11]
D. Gao, Z. Li, Q. Han and Q. Zhai, Effect of ultrasonic power on microstructure and mechanical properties of AZ91 alloy, Mater. Sci. Eng. A 502 (2009) 2-5.
Google Scholar
[12]
S. Zhang, Y. Zhao, X. Cheng, G. Chen and Q. Dai, High-energy ultrasonic field effects on the microstructure and mechanical behaviors of A356 alloy, J. Alloys Compd. 470 (2009) 168-172.
DOI: 10.1016/j.jallcom.2008.02.091
Google Scholar
[13]
Y. Li, H. Feng, F. Cao, Y. Chen and L. Gong, Effect of high density ultrasonic on the microstructure and refining property of Al–5Ti–0.25C grain refiner alloy, Mater. Sci. Eng. A 487 (2008) 518-523.
DOI: 10.1016/j.msea.2007.11.067
Google Scholar
[14]
M. Avedesian and H. Baker, Magnesium and magnesium alloys, first ed., ASM International, Materials Park, (1999).
Google Scholar
[15]
H. Ryou, J. W. Drazin, K. J. Wahl, S. B. Qadri, E. P. Gorzkowski, B. N. Feigelson and J. A. Wollmershauser, Below the hall–petch limit in nanocrystalline ceramics, ACS Nano 12 (2018) 3083-3094.
DOI: 10.1021/acsnano.7b07380
Google Scholar
[16]
H. Puga, V. Carneiro and J. B. V. Vieira, Effect of ultrasonic treatment in the static and dynamic mechanical behavior of AZ91D Mg alloy, Metals 5 (2015) 2210-2221.
DOI: 10.3390/met5042210
Google Scholar