Hardness Development of Mechanically-Bonded Hybrid Nanostructured Alloys through High-Pressure Torsion

Article Preview

Abstract:

Processing through the application of high-pressure torsion (HPT) provides significant grain refinement in bulk metals at room temperature. These ultrafine-grained (UFG) materials after HPT generally demonstrate exceptional mechanical properties. Recent reports demonstrated the bulk-state reactions for mechanical bonding of dissimilar lightweight metal disks to synthesize hybrid alloy systems by utilizing conventional HPT processing. Accordingly, the present report provides a comprehensive summary of the recent work on processing of several UFG hybrid alloy systems including Al-Mg and Al-Cu by HPT under 6.0 GPa at room temperature and a special emphasis was placed on understanding the evolution of hardness. This study demonstrates a significant opportunity for the application of HPT for a possible contribution to current enhancements in diffusion bonding, welding and mechanical joining technologies as well as to an introduction of hybrid engineering nanomaterials.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

177-182

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.G. Langdon, Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement, Acta Mater. 61 (2013) 7035-7059.

DOI: 10.1016/j.actamat.2013.08.018

Google Scholar

[2] A. P. Zhilyaev, T. G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893-979.

DOI: 10.1016/j.pmatsci.2008.03.002

Google Scholar

[3] B. Ahn, A.P. Zhilyaev, H.-J. Lee, M. Kawasaki, T.G. Langdon, Rapid synthesis of an extra hard metal matrix nanocomposite at ambient temperature, Mater. Sci. Eng. A 635 (2015) 109-117.

DOI: 10.1016/j.msea.2015.03.042

Google Scholar

[4] M. Kawasaki, B. Ahn, H.J. Lee, A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion to process an aluminum–magnesium nanocomposite through diffusion bonding, J. Mater. Res. 31 (2016) 88-98.

DOI: 10.1557/jmr.2015.257

Google Scholar

[5] B. Ahn, H.-J. Lee, I.-C. Choi, M. Kawasaki, J.-i. Jang, T.G. Langdon, Micro-mechanical behavior of an exceptionally strong metal matrix nanocomposite processed by high-pressure torsion, Adv. Eng. Mater. 18 (2016) 1001-1008.

DOI: 10.1002/adem.201500520

Google Scholar

[6] J.-K. Han, H.-J. Lee, J.-I, Jang, M. Kawasaki, T.G. Langdon, Micro-mechanical and tribological properties of aluminum-magnesium nanocomposites processed by high-pressure torsion, Mater. Sci. Eng. A 684 (2017) 318-327.

DOI: 10.1016/j.msea.2016.12.067

Google Scholar

[7] M. Kawasaki, S.N. Alhajeri, C. Xu, and T.G. Langdon, The development of hardness homogeneity in pure aluminum and aluminum alloy disks processed by high-pressure torsion, Mater. Sci. Eng. A 529 (2011) 345-351.

DOI: 10.1016/j.msea.2011.09.039

Google Scholar

[8] H.-J. Lee, S.K. Lee, K.H. Jung, G.A. Lee, B. Ahn, M. Kawasaki, and T.G. Langdon, Evolution in hardness and texture of a ZK60A magnesium alloy processed by high-pressure torsion, Mater. Sci. Eng. A 630 (2015) 90-98.

DOI: 10.1016/j.msea.2015.02.011

Google Scholar

[9] X. Wu, Y. Zhu, Heterogeneous materials: a new class of materials with unprecedented mechanical properties, Mater. Res. Lett. 5 (2017) 523-532.

Google Scholar

[10] J.-K. Han, K.-D. Liss, T.G. Langdon, M. Kawasaki, Synthesis of a bulk nanostructured metastable Al alloy with extreme supersaturation of Mg, Sci. Rep. 9 (2019) 17186.

DOI: 10.1038/s41598-019-53614-3

Google Scholar

[11] J.-K. Han, D.K. Han, G.Y. Liang, J.-i. Jang, T.G. Langdon, M. Kawasaki, Direct bonding of aluminum-copper metals through high-pressure torsion processing, Adv. Eng. Mater. 20 (2018) 1800642.

DOI: 10.1002/adem.201800642

Google Scholar

[12] M. Kawasaki, Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion, J. Mater. Sci. 49 (2014) 18-34.

DOI: 10.1007/s10853-013-7687-9

Google Scholar

[13] A.P. Zhilyaev, S. Lee, G.V. Nurislamova, R.Z. Valiev, T.G. Langdon, Microhardness and microstructural evolution in pure nickel during high-pressure torsion, Scripta Mater. 44 (2001) 2753-2758.

DOI: 10.1016/s1359-6462(01)00955-1

Google Scholar

[14] D. Hernández-Escobar, J. Marcus, J.-K. Han, R.R. Unocic, M. Kawasaki, C.J. Boehlert, Effect of post-deformation annealing on the microstructure and micro-mechanical behavior of Zn–Mg hybrids processed by high-pressure torsion, Mater. Sci. Eng. A 771 (2019) 138578.

DOI: 10.1016/j.msea.2019.138578

Google Scholar