[1]
Y. Kawamura, M. Yamasaki, Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure, Mater.Trans. 48 (2007) 2986-2992.
DOI: 10.2320/matertrans.mer2007142
Google Scholar
[2]
S. Yoshimoto, M. Yamasaki, Y. Kawamura, Microstructure and mechanical properties of extruded Mg-Zn-Y alloys with 14H long period ordered structure, Mater.Trans. 47 (2006) 959-965.
DOI: 10.2320/matertrans.47.959
Google Scholar
[3]
M. Hirano, M. Yamasaki, K. Hagihara, K. Higashida, Y. Kawamura, Effect of extrusion parameters on mechanical properties of Mg97Zn1Y2 alloys at room and elevated temperatures, Mater.Trans. 51 (2010) 1640-1647.
DOI: 10.2320/matertrans.maw201026
Google Scholar
[4]
J. Wang, P. Song, X. Zhou, X. Huang, F. Pan, Influence of the morphology of long-period stacking ordered phase on the mechanical properties of as-extruded Mg–5Zn–5Y–0.6Zr magnesium alloy, Mater.Sci.Eng.A 556 (2012) 68-75.
DOI: 10.1016/j.msea.2012.06.059
Google Scholar
[5]
X.H. Shao, Z.Q. Yang, X.L. Ma, Strengthening and toughening mechanisms in Mg–Zn–Y alloy with a long period stacking ordered structure, Acta Mater. 58 (2010) 4760-4771.
DOI: 10.1016/j.actamat.2010.05.012
Google Scholar
[6]
E. Oñorbe, G. Garcés, P. Pérez, P. Adeva, Effect of the LPSO volume fraction on the microstructure and mechanical properties of Mg–Y2X–ZnX alloys, J.Mater.Sci. 47 (2012) 1085-1093.
DOI: 10.1007/s10853-011-5899-4
Google Scholar
[7]
E. Oñorbe, G. Garcés, F. Dobes, P. Pérez, P. Adeva, High-temperature mechanical behavior of extruded Mg-Y-Zn alloy containing LPSO phases, Metall.Mater.Trans.A 44A (2013) 2869-2883.
DOI: 10.1007/s11661-013-1628-8
Google Scholar
[8]
J-K. Kim, S. Sandlöbes, D. Raabe, On the room temperature deformation mechanisms of a Mg–Y–Zn alloy with long-period-stacking-ordered structures, Acta Mater. 82 (2015) 414-423.
DOI: 10.1016/j.actamat.2014.09.036
Google Scholar
[9]
K. Hagihara, Z. Li, M. Yamasaki, Y. Kawamura, T. Nakano, Strengthening mechanisms acting in extruded Mg-based long-period stacking ordered (LPSO)-phase alloys, Acta Mater. 163 (2019) 226-239.
DOI: 10.1016/j.actamat.2018.10.016
Google Scholar
[10]
S. Menezes, D.P. Anderson, Wavelength-Property correlation in electrodeposited ultrastructured Cu-Ni multilayers., J.Electrochem.Soc. 137 (1990) 440-444.
DOI: 10.1149/1.2086459
Google Scholar
[11]
D.M. Tench, J.T. White, Tensile properties of nanostructured Ni-Cu multilayered materials prepared by electrodeposition, J.Electrochem.Soc. 138 (1991) 3757-3758.
DOI: 10.1149/1.2085495
Google Scholar
[12]
R.C. Cammarata, T.E. Schlesinger, C. Kim, S.B. Qadri, A.S. Edelstein, Nanoindentation study of the mechanical properties of copper-nickel multilayered thin films, Appl.Phys.Lett. 56 (1990) 1862-1864.
DOI: 10.1063/1.103070
Google Scholar
[13]
R.R. Oberle, R.C. Cammarata, Dependence of hardness on modulation amplitude in electrodeposited Cu-Ni compositionally modulated thin films, Scripta Metall.Mater. 32 (1995) 583-588.
DOI: 10.1016/0956-716x(95)90841-7
Google Scholar
[14]
A. Misra, M. Verdier, Y.C. Lu, H. Kung, T.E. Mitchell, M. Nastasi, J.D. Embury, Structure and mechanical properties of Cu-X (X = Nb, Cr, Ni) nanolayered composites, Scripta Mater. 39 (1998) 555-560.
DOI: 10.1016/s1359-6462(98)00196-1
Google Scholar
[15]
Y. Kaneko, Y. Mizuta, Y. Nishijima, S. Hashimoto, Vickers hardness and deformation of Ni/Cu nano-multilayers electrodeposited on copper substrate, J.Mater.Sci. 40 (2005) 3231-3236.
DOI: 10.1007/s10853-005-2690-4
Google Scholar
[16]
H. Hagiwara, N. Kawakami, Y. Kaneko, M. Uchida, Dependence of Vickers hardness on layer thickness in electrodeposited Ni-Co-Cu/Cu multilayered films, Mater.Trans. 60 (2019) 2569-2575.
DOI: 10.2320/matertrans.mt-m2019165
Google Scholar
[17]
J.B. Hess, C.S. Barrett, Structure and nature of kink bands in zinc, Trans. AM. Inst. Min. Met. Eng. 185 (1949) 599-606.
DOI: 10.1007/bf03398902
Google Scholar
[18]
R.G. Budynas, J.K. Nisbett, Shigley's mechanical engineering design, Ninth edition, McGraw-Hill, New York, 2008, pp.181-184.
Google Scholar