Biocompatibility of Anodized Low-Cost Ti-4.7Mo-4.5Fe Alloy

Article Preview

Abstract:

Self-organized TiO2 nanotubes were generated on the surface of the designed alloy Ti-4.7Mo-4.5Fe (TMF55) by electrochemical anodization process to investigate the effect of nanostructured on the biocompatibility. The biocompatibility of the designed alloys showed very promising results compared to those of Ti-6Al-4V ELI alloy, especially for the untreated and nanostructured surfaces of the specimens with diameter size less than 35 nm. By increasing the diameter of nanotube, the biocompatibility is decreased. The most convenient compatible alloy was in favor of TMF8 alloy, making this V-free low-cost alloy is a promising candidate for replacing the commercial Ti-6Al-4V ELI alloy in biomedical applications. Keywords: Self-organized TiO2 nanotubes, biocompatibility, Titanium alloys, Cell Counting Kit-8, WST-8 assay.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

458-464

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Shankar, G.K. Mor, H.E. Prakasam, S. Yoriya, M. Paulose, O.K. Varghese, C.A. Grimes, Highly-ordered TiO2 nanotube arrays up to 220 μm in length: Use in water photoelectrolysis and dye-sensitized solar cells, Nanotechnology. 18 (2007).

DOI: 10.1088/0957-4484/18/6/065707

Google Scholar

[2] W. Zhu, X. Liu, H. Liu, D. Tong, J. Yang, J. Peng, An efficient approach to control the morphology and the adhesion properties of anodized TiO 2 nanotube arrays for improved photoconversion efficiency, Electrochim. Acta. 56 (2011) 2618–2626.

DOI: 10.1016/j.electacta.2010.11.012

Google Scholar

[3] T. Kumeria, H. Mon, M.S. Aw, K. Gulati, A. Santos, H.J. Griesser, D. Losic, Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties, Colloids Surfaces B Biointerfaces. 130 (2015) 255–263.

DOI: 10.1016/j.colsurfb.2015.04.021

Google Scholar

[4] G. Liu, N. Hoivik, K. Wang, H. Jakobsen, A voltage-dependent investigation on detachment process for free-standing crystalline TiO 2 nanotube membranes, J. Mater. Sci. 46 (2011) 7931–7935.

DOI: 10.1007/s10853-011-5927-4

Google Scholar

[5] J.M. Macák, H. Tsuchiya, P. Schmuki, High-aspect-ratio TiO2 nanotubes by anodization of titanium, Angew. Chemie - Int. Ed. 44 (2005) 2100–2102.

DOI: 10.1002/anie.200462459

Google Scholar

[6] H. Rohde, E.C. Burandt, N. Siemssen, L. Frommelt, C. Burdelski, S. Wurster, S. Scherpe, A.P. Davies, L.G. Harris, M.A. Horstkotte, J.K.-M. Knobloch, C. Ragunath, J.B. Kaplan, D. Mack, Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections, Biomaterials. 28 (2007) 1711–1720.

DOI: 10.1016/j.biomaterials.2006.11.046

Google Scholar

[7] C.A. Fux, J.W. Costerton, P.S. Stewart, P. Stoodley, Survival strategies of infectious biofilms, Trends Microbiol. 13 (2005) 34–40.

DOI: 10.1016/j.tim.2004.11.010

Google Scholar

[8] K.C. Popat, M. Eltgroth, T.J. LaTempa, C.A. Grimes, T.A. Desai, Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes, Biomaterials. 28 (2007) 4880–4888.

DOI: 10.1016/j.biomaterials.2007.07.037

Google Scholar

[9] B. Ercan, E. Taylor, E. Alpaslan, T. Webster, Diameter of titanium nanotubes influences anti-bacterial efficacy, Nanotechnology. 22 (2011) 295102.

DOI: 10.1088/0957-4484/22/29/295102

Google Scholar

[10] M.A.-H. Gepreel, S. Kobayashi, Y.M. Abd-elrhman, Biocompatibility of New Low-Cost Ti-Alloys, in: Proc. 13th World Conf. Titan., John Wiley & Sons, Inc., Hoboken, NJ, USA, 2016: p.1669–1671.

DOI: 10.1002/9781119296126.ch279

Google Scholar

[11] Y. Abd-elrhman, M.A.H. Gepreel, A. Abdel-Moniem, S. Kobayashi, Compatibility assessment of new V-free low-cost Ti-4.7Mo-4.5Fe alloy for some biomedical applications, Mater. Des. 97 (2016) 445–453.

DOI: 10.1016/j.matdes.2016.02.110

Google Scholar

[12] ISO 10993-5:2009 - Biological evaluation of medical devices -- Part 5: Tests for in vitro cytotoxicity, Arlington, VA ANSI/AAMI. (2009). http://www.iso.org/iso/catalogue_detail.htm?csnumber=36406 (accessed February 19, 2016).

DOI: 10.2345/9781570203558

Google Scholar

[13] H.E. Prakasam, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, ARTICLES A New Benchmark for TiO 2 Nanotube Array Growth by Anodization, (2007) 7235–7241.

DOI: 10.1021/jp070273h

Google Scholar

[14] M.S. Park Bauer, Nanosize and Vitality TiO2 Diameter Directs Cell Fate, Nano Lett. 7 (2007) 1686–1691.

DOI: 10.1021/nl070678d

Google Scholar

[15] H.H. Huang, C.P. Wu, Y.S. Sun, W.E. Yang, T.H. Lee, Surface nanotopography of an anodized Ti-6Al-7Nb alloy enhances cell growth, J. Alloys Compd. 615 (2015) S648–S654.

DOI: 10.1016/j.jallcom.2013.12.235

Google Scholar

[16] M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.J. LaTempa, A. Fitzgerald, C. a Grimes, Anodic growth of highly ordered TiO2 nanotube arrays to 134 microm in length., J. Phys. Chem. B. 110 (2006) 16179–16184.

DOI: 10.1021/jp064020k

Google Scholar

[17] J.M. Macak, P. Schmuki, Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes, Electrochim. Acta. 52 (2006) 1258–1264.

DOI: 10.1016/j.electacta.2006.07.021

Google Scholar

[18] J.M. Macak, H. Tsuchiya, a. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, TiO2 nanotubes: Self-organized electrochemical formation, properties and applications, Curr. Opin. Solid State Mater. Sci. 11 (2007) 3–18.

DOI: 10.1016/j.cossms.2007.08.004

Google Scholar

[19] J.M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Self-organized TiO2 nanotube layers as highly efficient photocatalysts, Small. 3 (2007) 300–304.

DOI: 10.1002/smll.200600426

Google Scholar

[20] S. Oh, K.S. Brammer, Y.S. Li, D. Teng, A.J. Engler, S. Chien, S. Jin, Stem cell fate dictated solely by altered nanotube dimension, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 2130–2135.

DOI: 10.1073/pnas.0813200106

Google Scholar

[21] A.F. Cipriano, C. Miller, H. Liu, Anodic growth and biomedical applications of TiO2 nanotubes, J. Biomed. Nanotechnol. 10 (2014) 2977–3003.

DOI: 10.1166/jbn.2014.1927

Google Scholar