[1]
K. Shankar, G.K. Mor, H.E. Prakasam, S. Yoriya, M. Paulose, O.K. Varghese, C.A. Grimes, Highly-ordered TiO2 nanotube arrays up to 220 μm in length: Use in water photoelectrolysis and dye-sensitized solar cells, Nanotechnology. 18 (2007).
DOI: 10.1088/0957-4484/18/6/065707
Google Scholar
[2]
W. Zhu, X. Liu, H. Liu, D. Tong, J. Yang, J. Peng, An efficient approach to control the morphology and the adhesion properties of anodized TiO 2 nanotube arrays for improved photoconversion efficiency, Electrochim. Acta. 56 (2011) 2618–2626.
DOI: 10.1016/j.electacta.2010.11.012
Google Scholar
[3]
T. Kumeria, H. Mon, M.S. Aw, K. Gulati, A. Santos, H.J. Griesser, D. Losic, Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties, Colloids Surfaces B Biointerfaces. 130 (2015) 255–263.
DOI: 10.1016/j.colsurfb.2015.04.021
Google Scholar
[4]
G. Liu, N. Hoivik, K. Wang, H. Jakobsen, A voltage-dependent investigation on detachment process for free-standing crystalline TiO 2 nanotube membranes, J. Mater. Sci. 46 (2011) 7931–7935.
DOI: 10.1007/s10853-011-5927-4
Google Scholar
[5]
J.M. Macák, H. Tsuchiya, P. Schmuki, High-aspect-ratio TiO2 nanotubes by anodization of titanium, Angew. Chemie - Int. Ed. 44 (2005) 2100–2102.
DOI: 10.1002/anie.200462459
Google Scholar
[6]
H. Rohde, E.C. Burandt, N. Siemssen, L. Frommelt, C. Burdelski, S. Wurster, S. Scherpe, A.P. Davies, L.G. Harris, M.A. Horstkotte, J.K.-M. Knobloch, C. Ragunath, J.B. Kaplan, D. Mack, Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections, Biomaterials. 28 (2007) 1711–1720.
DOI: 10.1016/j.biomaterials.2006.11.046
Google Scholar
[7]
C.A. Fux, J.W. Costerton, P.S. Stewart, P. Stoodley, Survival strategies of infectious biofilms, Trends Microbiol. 13 (2005) 34–40.
DOI: 10.1016/j.tim.2004.11.010
Google Scholar
[8]
K.C. Popat, M. Eltgroth, T.J. LaTempa, C.A. Grimes, T.A. Desai, Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes, Biomaterials. 28 (2007) 4880–4888.
DOI: 10.1016/j.biomaterials.2007.07.037
Google Scholar
[9]
B. Ercan, E. Taylor, E. Alpaslan, T. Webster, Diameter of titanium nanotubes influences anti-bacterial efficacy, Nanotechnology. 22 (2011) 295102.
DOI: 10.1088/0957-4484/22/29/295102
Google Scholar
[10]
M.A.-H. Gepreel, S. Kobayashi, Y.M. Abd-elrhman, Biocompatibility of New Low-Cost Ti-Alloys, in: Proc. 13th World Conf. Titan., John Wiley & Sons, Inc., Hoboken, NJ, USA, 2016: p.1669–1671.
DOI: 10.1002/9781119296126.ch279
Google Scholar
[11]
Y. Abd-elrhman, M.A.H. Gepreel, A. Abdel-Moniem, S. Kobayashi, Compatibility assessment of new V-free low-cost Ti-4.7Mo-4.5Fe alloy for some biomedical applications, Mater. Des. 97 (2016) 445–453.
DOI: 10.1016/j.matdes.2016.02.110
Google Scholar
[12]
ISO 10993-5:2009 - Biological evaluation of medical devices -- Part 5: Tests for in vitro cytotoxicity, Arlington, VA ANSI/AAMI. (2009). http://www.iso.org/iso/catalogue_detail.htm?csnumber=36406 (accessed February 19, 2016).
DOI: 10.2345/9781570203558
Google Scholar
[13]
H.E. Prakasam, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, ARTICLES A New Benchmark for TiO 2 Nanotube Array Growth by Anodization, (2007) 7235–7241.
DOI: 10.1021/jp070273h
Google Scholar
[14]
M.S. Park Bauer, Nanosize and Vitality TiO2 Diameter Directs Cell Fate, Nano Lett. 7 (2007) 1686–1691.
DOI: 10.1021/nl070678d
Google Scholar
[15]
H.H. Huang, C.P. Wu, Y.S. Sun, W.E. Yang, T.H. Lee, Surface nanotopography of an anodized Ti-6Al-7Nb alloy enhances cell growth, J. Alloys Compd. 615 (2015) S648–S654.
DOI: 10.1016/j.jallcom.2013.12.235
Google Scholar
[16]
M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.J. LaTempa, A. Fitzgerald, C. a Grimes, Anodic growth of highly ordered TiO2 nanotube arrays to 134 microm in length., J. Phys. Chem. B. 110 (2006) 16179–16184.
DOI: 10.1021/jp064020k
Google Scholar
[17]
J.M. Macak, P. Schmuki, Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes, Electrochim. Acta. 52 (2006) 1258–1264.
DOI: 10.1016/j.electacta.2006.07.021
Google Scholar
[18]
J.M. Macak, H. Tsuchiya, a. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, TiO2 nanotubes: Self-organized electrochemical formation, properties and applications, Curr. Opin. Solid State Mater. Sci. 11 (2007) 3–18.
DOI: 10.1016/j.cossms.2007.08.004
Google Scholar
[19]
J.M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Self-organized TiO2 nanotube layers as highly efficient photocatalysts, Small. 3 (2007) 300–304.
DOI: 10.1002/smll.200600426
Google Scholar
[20]
S. Oh, K.S. Brammer, Y.S. Li, D. Teng, A.J. Engler, S. Chien, S. Jin, Stem cell fate dictated solely by altered nanotube dimension, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 2130–2135.
DOI: 10.1073/pnas.0813200106
Google Scholar
[21]
A.F. Cipriano, C. Miller, H. Liu, Anodic growth and biomedical applications of TiO2 nanotubes, J. Biomed. Nanotechnol. 10 (2014) 2977–3003.
DOI: 10.1166/jbn.2014.1927
Google Scholar