[1]
D. B. Miracle and O. N. Senkov, A critical review of high entropy alloys and related concepts,, Acta Mater., vol. 122, p.448–511, (2017).
DOI: 10.1016/j.actamat.2016.08.081
Google Scholar
[2]
D. B. Miracle, J. D. Miller, O. N. Senkov, C. Woodward, M. D. Uchic, and J. Tiley, Exploration and development of high entropy alloys for structural applications,, Entropy, vol. 16, no. 1, p.494–525, (2014).
DOI: 10.3390/e16010494
Google Scholar
[3]
L. J. Santodonato et al., Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy,, Nat. Commun., vol. 6, (2015).
DOI: 10.1038/ncomms6964
Google Scholar
[4]
Y. Zhang et al., Microstructures and properties of high-entropy alloys,, Prog. Mater. Sci., vol. 61, no. October 2013, p.1–93, (2014).
Google Scholar
[5]
O. N. Senkov and D. B. Miracle, A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys,, J. Alloys Compd., vol. 658, p.603–607, (2016).
DOI: 10.1016/j.jallcom.2015.10.279
Google Scholar
[6]
M. Widom, Prediction of structure and phase transformations,, High-Entropy Alloy. Fundam. Appl., p.267–298, (2016).
Google Scholar
[7]
B. S. Murty, J. W. Yeh, and S. Ranganathan, High-Entropy Alloys. (2014).
Google Scholar
[8]
O. N. Senkov, J. D. Miller, D. B. Miracle, and C. Woodward, Accelerated exploration of multi-principal element alloys for structural applications,, Calphad Comput. Coupling Phase Diagrams Thermochem., vol. 50, p.32–48, (2015).
DOI: 10.1016/j.calphad.2015.04.009
Google Scholar
[9]
J. W. Yeh et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes,, Adv. Eng. Mater., vol. 6, no. 5, p.299–303+274, (2004).
DOI: 10.1002/adem.200300567
Google Scholar
[10]
B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, Microstructural development in equiatomic multicomponent alloys,, Mater. Sci. Eng. A, vol. 375–377, no. 1–2 SPEC. ISS., p.213–218, (2004).
DOI: 10.1016/j.msea.2003.10.257
Google Scholar
[11]
C. Simson, Compositionally Complex Alloys im Bereich niedriger Dichten – experimentelle und thermodynamische Betrachtungen,, 9. Ranshofener Leichtmetalltage, p.7, (2016).
Google Scholar
[12]
P. Sigmund, Mechanisms and theory of physical sputtering by particle impact,, Nucl. Inst. Methods Phys. Res. B, vol. 27, no. 1, p.1–20, (1987).
Google Scholar
[13]
H. Adachi, T. Hata, T. Matsushima, T. Motohiro, and K. Tominaga, Handbook of Sputter Deposition Technology. (2012).
Google Scholar
[14]
X. Jia et al., Post-sputtering heat treatments of molybdenum on siliconwafer,, Appl. Sci., vol. 8, no. 9, p.1–10, (2018).
Google Scholar
[15]
S. Curtarolo et al., AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations,, Comput. Mater. Sci., vol. 58, p.227–235, (2012).
Google Scholar
[16]
A. Takeuchi and A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element,, Mater. Trans., vol. 46, no. 12, p.2817–2829, (2005).
DOI: 10.2320/matertrans.46.2817
Google Scholar