[1]
W. J Kim., K. E. Lee, S. H. Choi, Mechanical properties and microstructure of ultra fine-grained copper prepared by a high-speed-ratio differential speed rolling, Mat. Sci. Eng. A 506 (2009)71–79.
DOI: 10.1016/j.msea.2008.11.029
Google Scholar
[2]
F.Q. Zuo, J. H. Jiang, A.D. Shan, J. M Fang., X. Y. Zhang, Shear deformation and grain refinement in pure Al by asymmetric rolling. Tans. NonferrousMet. Soc. China, 18 (2008) 774-777.
DOI: 10.1016/s1003-6326(08)60133-8
Google Scholar
[3]
A.Wierzba, S.Mroz, P.Szota, A.Stefanik, R Mola., The influence of the asymmetric ARB process on the properties of Al-Mg-Al multi-layer sheets, Arch. Metall. Mater. 60 (2015) 2821–2825.
DOI: 10.1515/amm-2015-0450
Google Scholar
[4]
A.Mendes, I.Timokhina, A.Molotnikov, P. D.Hodgson, R.Lapovok, Role of shear in interface formation of aluminum-steel multilayered composite sheets, Mater. Sci. Eng. A 705 (2017) 142-152.
DOI: 10.1016/j.msea.2017.08.025
Google Scholar
[5]
J.Sidor, A.Miroux, R.Petrov, L.Kestens, Deformation, recrystallization and plastic anisotropy of asymmetrically rolled aluminum sheets, Mater. Sci. Eng. A, 528 (2010) 413–424.
DOI: 10.1016/j.msea.2010.09.023
Google Scholar
[6]
H.Jin, D.J. Lloyd, The reduction of planar anisotropy by texture modification through asymmetric rolling and annealing in AA5754. Mater. Sci. Eng. A. 399 (2005)358–367.
DOI: 10.1016/j.msea.2005.04.027
Google Scholar
[7]
H.Jin, D.J. Lloyd, Evolution of texture in AA6111 aluminum alloy after asymmetric rolling with various velocity ratios between top and bottom rolls, Mater. Sci. Eng. A 465 (2007) 267–273.
DOI: 10.1016/j.msea.2007.02.128
Google Scholar
[8]
H.Jin, D. J. Lloyd, The different effects of asymmetric rolling and surface friction on formation of shear texture in aluminium alloy AA5754, Mater. Sci. Technol. 26 (2009) 754-760.
DOI: 10.1179/174328409x405634
Google Scholar
[9]
H.Gao, S. C.Ramalingam, G.C. Barber, G.Chen, Analysis of asymmetrical cold rolling with varying coefficients of friction, J. Mater. Process. Technol. 124 (2002) 178–182.
DOI: 10.1016/s0924-0136(02)00131-0
Google Scholar
[10]
S.Wronski, B.Ghilianu, T.Chauveau, B.Bacroix, Analysis of textures heterogeneity in cold and warm asymmetrically rolled aluminium. Mater. Charact., 62 (2011) 22–34.
DOI: 10.1016/j.matchar.2010.10.002
Google Scholar
[11]
K. M.Lee, H. G.Kang, M H.Huh, Engler O, Effect of strain paths on shear textures during rolling in aluminum sheets. Met. Mater. Int. 16 (2010) 851-856.
DOI: 10.1007/s12540-010-1025-4
Google Scholar
[12]
N.Kamikawa, N.Tsuji, Microstructure and Mechanical Properties of ARB Processed Aluminium with Different Purities, Materials Transactions 57 (2016) 1720 - 1728.
DOI: 10.2320/matertrans.mh201519
Google Scholar
[13]
J.Bonet, R. D.Wood, J.Mahaney, P.Heywood, Finite element analysis of air supported membrane structures, Comput. Methods Appl. Mech. Eng. 190 (2000) 579-595.
DOI: 10.1016/s0045-7825(99)00428-4
Google Scholar
[14]
H.J Bunge., Texture Analysis in Materials Science, Butterworts, London, (1982).
Google Scholar
[15]
B. Beausir and J.-J. Fundenberger, Analysis Tools for Electron and X-ray diffraction, ATEX - software, www.atex-software.eu, Université de Lorraine - Metz, (2017).
Google Scholar
[16]
L.Li, , K. Nagai, F. Yin, Progess in cold roll bonding of metals, Sci.Tech. Adv. Mat. 9 (2008) 23001-23012.
Google Scholar
[17]
L. Lienshöft, P. Chekhonin, D. Zöllner, J. Scharnweber, T. Marr, T. Krauter, H. W. Hoeppel, W. Skrotzki, Static recrystallization and grain growth of accumulative roll bonded aluminum laminates, J. Mater. Res. 32 (2017) 4503-4513.
DOI: 10.1557/jmr.2017.386
Google Scholar
[18]
R. Jamaati, M. R. Toroghinejad, Cold roll bonding bond strenghts: review, Mater. Sci. Tech 27 (2011) 1011-1108.
Google Scholar
[19]
D. Shore, L.A.I. Kestens, J. Sidor, P.V. Houtte, A.V. Bael, Process parameter influence on texture heterogeneity in asymmetric rolling of aluminium sheet alloys, Int J Mater Form 11 (2018) 297–309.
DOI: 10.1007/s12289-016-1330-7
Google Scholar
[20]
C.H. Choi, J.W. Kwon, K.H Oh,, D.N. Lee, Analysis of deformation texture inhomogeneity and stability condition of shear components in fcc metals, Acta Mater. 45 (1997) 5119-5128.
DOI: 10.1016/s1359-6454(97)00169-9
Google Scholar