Analysis of the Strain Distribution and Texture Measurements in Asymmetric Rolling (AR) and Asymmetric Accumulative Roll Bonding (AARB)

Article Preview

Abstract:

Severe plastic deformation (SPD) with strong shear component is required to promote both grain refinement and texture randomization. When Asymmetric rolling (AR) is applied as asymmetric accumulative roll bonding (AARB), it enables the production of architectured microstructures and metallic composites. Finite element (FE) simulations of AR and AARB were employed to understand the influence of pass thickness reduction (PTR) on the through thickness variation of the velocity gradient. The influence of the PTR up to a total thickness reduction of 50% and the effect of a single 50% reduction step in a bi-layer bonding condition was analyzed. The influence of these process parameters on the strain and rigid body rotation components was compared with the experimental data obtained on an AA1050 aluminum. A better shear to compression ratio across the sheet thickness is achieved by PTRs lower than 30%; at a PTR of 50% the texture is dominated by the frictional shear generated at the roll-sheet interface and the process has a stronger compressive character. This indicates that simple ARB followed by AR with smaller PTRs should generate a better shear distribution than AARB alone.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

715-724

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. J Kim., K. E. Lee, S. H. Choi, Mechanical properties and microstructure of ultra fine-grained copper prepared by a high-speed-ratio differential speed rolling, Mat. Sci. Eng. A 506 (2009)71–79.

DOI: 10.1016/j.msea.2008.11.029

Google Scholar

[2] F.Q. Zuo, J. H. Jiang, A.D. Shan, J. M Fang., X. Y. Zhang, Shear deformation and grain refinement in pure Al by asymmetric rolling. Tans. NonferrousMet. Soc. China, 18 (2008) 774-777.

DOI: 10.1016/s1003-6326(08)60133-8

Google Scholar

[3] A.Wierzba, S.Mroz, P.Szota, A.Stefanik, R Mola., The influence of the asymmetric ARB process on the properties of Al-Mg-Al multi-layer sheets, Arch. Metall. Mater. 60 (2015) 2821–2825.

DOI: 10.1515/amm-2015-0450

Google Scholar

[4] A.Mendes, I.Timokhina, A.Molotnikov, P. D.Hodgson, R.Lapovok, Role of shear in interface formation of aluminum-steel multilayered composite sheets, Mater. Sci. Eng. A 705 (2017) 142-152.

DOI: 10.1016/j.msea.2017.08.025

Google Scholar

[5] J.Sidor, A.Miroux, R.Petrov, L.Kestens, Deformation, recrystallization and plastic anisotropy of asymmetrically rolled aluminum sheets, Mater. Sci. Eng. A, 528 (2010) 413–424.

DOI: 10.1016/j.msea.2010.09.023

Google Scholar

[6] H.Jin, D.J. Lloyd, The reduction of planar anisotropy by texture modification through asymmetric rolling and annealing in AA5754. Mater. Sci. Eng. A. 399 (2005)358–367.

DOI: 10.1016/j.msea.2005.04.027

Google Scholar

[7] H.Jin, D.J. Lloyd, Evolution of texture in AA6111 aluminum alloy after asymmetric rolling with various velocity ratios between top and bottom rolls, Mater. Sci. Eng. A 465 (2007) 267–273.

DOI: 10.1016/j.msea.2007.02.128

Google Scholar

[8] H.Jin, D. J. Lloyd, The different effects of asymmetric rolling and surface friction on formation of shear texture in aluminium alloy AA5754, Mater. Sci. Technol. 26 (2009) 754-760.

DOI: 10.1179/174328409x405634

Google Scholar

[9] H.Gao, S. C.Ramalingam, G.C. Barber, G.Chen, Analysis of asymmetrical cold rolling with varying coefficients of friction, J. Mater. Process. Technol. 124 (2002) 178–182.

DOI: 10.1016/s0924-0136(02)00131-0

Google Scholar

[10] S.Wronski, B.Ghilianu, T.Chauveau, B.Bacroix, Analysis of textures heterogeneity in cold and warm asymmetrically rolled aluminium. Mater. Charact., 62 (2011) 22–34.

DOI: 10.1016/j.matchar.2010.10.002

Google Scholar

[11] K. M.Lee, H. G.Kang, M H.Huh, Engler O, Effect of strain paths on shear textures during rolling in aluminum sheets. Met. Mater. Int. 16 (2010) 851-856.

DOI: 10.1007/s12540-010-1025-4

Google Scholar

[12] N.Kamikawa, N.Tsuji, Microstructure and Mechanical Properties of ARB Processed Aluminium with Different Purities, Materials Transactions 57 (2016) 1720 - 1728.

DOI: 10.2320/matertrans.mh201519

Google Scholar

[13] J.Bonet, R. D.Wood, J.Mahaney, P.Heywood, Finite element analysis of air supported membrane structures, Comput. Methods Appl. Mech. Eng. 190 (2000) 579-595.

DOI: 10.1016/s0045-7825(99)00428-4

Google Scholar

[14] H.J Bunge., Texture Analysis in Materials Science, Butterworts, London, (1982).

Google Scholar

[15] B. Beausir and J.-J. Fundenberger, Analysis Tools for Electron and X-ray diffraction, ATEX - software, www.atex-software.eu, Université de Lorraine - Metz, (2017).

Google Scholar

[16] L.Li, , K. Nagai, F. Yin, Progess in cold roll bonding of metals, Sci.Tech. Adv. Mat. 9 (2008) 23001-23012.

Google Scholar

[17] L. Lienshöft, P. Chekhonin, D. Zöllner, J. Scharnweber, T. Marr, T. Krauter, H. W. Hoeppel, W. Skrotzki, Static recrystallization and grain growth of accumulative roll bonded aluminum laminates, J. Mater. Res. 32 (2017) 4503-4513.

DOI: 10.1557/jmr.2017.386

Google Scholar

[18] R. Jamaati, M. R. Toroghinejad, Cold roll bonding bond strenghts: review, Mater. Sci. Tech 27 (2011) 1011-1108.

Google Scholar

[19] D. Shore, L.A.I. Kestens, J. Sidor, P.V. Houtte, A.V. Bael, Process parameter influence on texture heterogeneity in asymmetric rolling of aluminium sheet alloys, Int J Mater Form 11 (2018) 297–309.

DOI: 10.1007/s12289-016-1330-7

Google Scholar

[20] C.H. Choi, J.W. Kwon, K.H Oh,, D.N. Lee, Analysis of deformation texture inhomogeneity and stability condition of shear components in fcc metals, Acta Mater. 45 (1997) 5119-5128.

DOI: 10.1016/s1359-6454(97)00169-9

Google Scholar