Fabrication of Three-Dimensional Microstructure Film by Ni-Cu Alloy Electrodeposition for Joining Dissimilar Materials

Article Preview

Abstract:

Metals with a three-dimensional microstructure film can be joined to plastics by the anchor effect. The three-dimensional microstructure films can be electrodeposited by a Ni-Cu alloy. In this study, the effects of the ratio of the concentration of Ni amidosulfate and Cu sulfate in the plating solution and plating current density on the shapes and microstructures of electrodeposited films were investigated. When the ratio of the concentration of the Ni amidosulfate and the Cu sulfate is 0.47-1.4:0.06 (M/L), a dendritic-type electrodeposited structure was generated at plating current density of 10 mA/cm2. When the ratio of the concentration of the Ni amidosulfate and the Cu sulfate is 0.47:0.6-1.2 (M/L), a feathery-type and needle-type electrodeposited structure was generated.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

738-743

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Goede, M. Stehlin, L. Rafflenbeul, G. Kopp, E. Beeh, Super light car-lightweight construction thanks to a multi-material design and function integration, Eur. Transp. Res. Rev. 1 (2009) 5-10.

DOI: 10.1007/s12544-008-0001-2

Google Scholar

[2] J. Korta, T. Uhl, Multi-material design optimization of a bus body structure, J. KONES Powertrain and Transport 20 (2013) 139-146.

DOI: 10.5604/12314005.1135327

Google Scholar

[3] J. Korta, A. Mlyniec, T. Uhl, Experimental and numerical study on the effect of humidity-temperature cycling on structural multi-material adhesive joints, Composites: Part B 79 (2015) 621-630.

DOI: 10.1016/j.compositesb.2015.05.020

Google Scholar

[4] H.C. Schmidt, U. Damerow, C. Lauter, B. Gorny, F. Hankeln, W. Homberg, T. Troester, H.J. Maier, R. Mahnken, Manufacturing processes for combined forming of multi-material structures consisting of sheet metal and local CFRP reinforcements, Key. Eng. Mater. 504-506 (2012) 295-300.

DOI: 10.4028/www.scientific.net/kem.504-506.295

Google Scholar

[5] K. Nagatsuka, B. Xiao, L. Wu, K. Nakata, S. Saeki, Y. Kitamoto, Y. Iwamoto, Resistance spot welding of metal/carbon-fibre-reinforced plastics and applying silane coupling treatment, Science and Technology of Welding and Joining 23 (2018) 181-186.

DOI: 10.1080/13621718.2017.1362159

Google Scholar

[6] K.W. Jung, Y. Kawahito, M. Takahashi, S. Katayama, Laser direct joining of carbon fiber reinforced plastic to zinc-coated steel, Materials and Design 47 (2013) 179-188.

DOI: 10.1016/j.matdes.2012.12.015

Google Scholar

[7] F. Balle, D. Eifler, Statistical test planning for ultrasonic welding of dissimilar materials using the example of aluminum-carbon fiber reinforced polymers (CFRP) joints, Mat.-wiss. u. Werkstofftech. 43 (2012) 286-292.

DOI: 10.1002/mawe.201200943

Google Scholar

[8] K. Nagatsuka, S. Yoshida, A. Tsuchiya, K. Nakata, Direct joining of carbon-fiber-reinforced plastic to an aluminum alloy using friction lap joining, Composites: Part B 73 (2015) 82-88.

DOI: 10.1016/j.compositesb.2014.12.029

Google Scholar

[9] J.M. Lee, J.S. Ko, Effects of a micro pattern on Cu alloy electrodeposition and its application as an oil detector, Micro and Nano Syst. Lett. 4 (2016) Article number: 9.

DOI: 10.1186/s40486-016-0034-6

Google Scholar

[10] J.M. Lee, K.K. Jung, J.S. Ko, Effect of NaCl in a nickel electrodeposition on the formation of nickel nanostructure, J. Mater. Sci. 52 (2016) 3036-3044.

DOI: 10.1007/s10853-015-9614-8

Google Scholar

[11] M. Hashemzadeh, K. Raeissi, F. Ashrafizadeh, S. Khorsand, Effect of ammonium chloride on microstructure, super-hydrophobicity and corrosion resistance of nickel coatings, Surface & Coatings Technology 283 (2015) 318-328.

DOI: 10.1016/j.surfcoat.2015.11.008

Google Scholar

[12] Z. Lia, H. Bian, C.M. Lee, X. Chen, Y.Y. Li, Nickel nanotube array via electroplating and dealloying, Thin Solid Films 658 (2018) 1-6.

DOI: 10.1016/j.tsf.2018.05.015

Google Scholar

[13] D. Goranova, R. Rashkov, G. Avdeev, V. Tonchev, Electrodeposition of Ni-Cu alloys at high current densities: details of the elements distribution, J. Mater. Sci. 51 (2016) 8663-8673.

DOI: 10.1007/s10853-016-0126-y

Google Scholar

[14] M. Haciismailoglu, M. Alper, Effect of electrolyte pH and Cu concentration on microstructure of electrodeposited Ni-Cu alloy films, Surf. Coat. Technol. 206 (2011) 1430-1438.

DOI: 10.1016/j.surfcoat.2011.09.010

Google Scholar

[15] J.M. Lee, S.H. Lee, J.S. Ko, Influence of open area ratio on microstructure shape in Cu-Ni alloy electrodeposition, Appl. Phys. A 118 (2015) 579-585.

DOI: 10.1007/s00339-014-8759-7

Google Scholar

[16] D.J. Arrowsmith, Adhesion of electroformed copper and nickel to plastic laminates, Trans. Inst. Metal Finish., 48 (1970) 88-92.

DOI: 10.1080/00202967.1970.11870136

Google Scholar

[17] D. Goranova, G. Avdeev, R. Rashkov, Electrodeposition and characterization of Ni-Cu alloys, Surf. Coat. Technol. 240 (2014) 204-210.

DOI: 10.1016/j.surfcoat.2013.12.014

Google Scholar

[18] J.M. Lee, J.S. Ko, Cu–Ni alloy electrodeposition on microstructured surfaces, J. Mater. Sci. 50 (2015) 393-402.

DOI: 10.1007/s10853-014-8598-0

Google Scholar