Creep Resistance of Ultrafine-Grained VT8M-1 Alloy

Article Preview

Abstract:

This paper is aimed to study the creep behavior of two-phase ultrafine-grained VT8M-1 (Ti-5.7Al-3.8Mo-1.2Zr-1.3Sn) titanium alloy obtained by rotary swaging (RS). It is shown that the 100-hour creep strength of the ultra-fine grained (UFG) VT8M-1 alloy retains high values at temperatures up to 400 °C. An increase in the testing temperature to >450 °C leads to a decrease in the creep rupture strength. The relationship between the microstructure and creep resistance of UFG alloy is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

922-927

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Veiga, J. P. Davim and A. J. R. Loureiro, Properties and applications of titanium alloys: A brief review, Rev. Adv. Mater. Sci. 32 (2012) 133-148.

Google Scholar

[2] T.V. Pavlova, O.S. Kashapov and N.A. Nochovnaya (2011) (Entsiklopedicheskii Spravochnik, VIAM) https://viam.ru/public/files/2011/2011-205852.pdf (in Russian).

Google Scholar

[3] M. A. Meyers, A. Mishra and D. J. Benson, Mechanical properties of nanocrystalline materials, Prog Mater Sci. 51 (2006) 427-556.

Google Scholar

[4] R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer and Y. T. Zhu, Fundamentals of Superior Properties in Bulk NanoSPD Materials, Mater. Res. Lett. 4 (2015) 1-21.

DOI: 10.1080/21663831.2015.1060543

Google Scholar

[5] R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer and Y. T. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation, JOM 58 (2006) 33-39.

DOI: 10.1007/s11837-006-0213-7

Google Scholar

[6] M. Klimova, M. Boeva, S. Zherebtsov and G. Salishchev, Ultrafine-grained structure formation in Ti-6Al-4V alloy via warm swaging, IOP Conf. Ser.: Mater. Sci. and Eng. 63 (2014) 012070.

DOI: 10.1088/1757-899x/63/1/012070

Google Scholar

[7] Q. Chao, P.D. Hodgson, H. Beladi, Thermal stability of an ultrafine grained Ti-6Al-4V alloy during post-deformation annealing, Mat. Sci. and Eng. A 694 (2017) 13-23.

DOI: 10.1016/j.msea.2017.03.082

Google Scholar

[8] I.P. Semenova, V.V. Polyakova, G.S. Dyakonov, A.V. Polyakov, Ultrafine-Grained Titanium-Based Alloys: Structure and Service Properties for Engineering Applications, Adv. Eng. Mat. (2019) 1900651.

DOI: 10.1002/adem.201900651

Google Scholar

[9] Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Mater. 61 (2013) 782–817.

DOI: 10.1016/j.actamat.2012.10.038

Google Scholar

[10] ASTM E139-11, Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress Rupture Tests of Metallic Materials, ASTM International, West Conshohocken, PA, (2011).

DOI: 10.1520/e0139-00e01

Google Scholar

[11] S L Semiatin (Ed), ASM Handbook: Metalworking: Bulk Forming, 14A, ASM International, Ohio, (2005).

Google Scholar

[12] I.P. Semenova, G.I. Raab, E.R. Golubovskiy, R.R. Valiev, Service properties of ultrafine-grained Ti-6Al-4V alloy at elevated temperature, J. Mater. Sci. 48 (2013) 4806–4812.

DOI: 10.1007/s10853-013-7305-x

Google Scholar

[13] I.P. Semenova, K.S. Selivanov, R.R. Valiev, Iu.M. Modina, M.K. Smyslova, A.V. Polyakov, T.G. Langdon, Enhanced creep resistance of an ultrafine-grained Ti-6Al-4V alloy with modified surface by ion implantation and (Ti+V)N coating, Adv. Eng. Mat. (2019) 1901219.

DOI: 10.1002/adem.201901219

Google Scholar