[1]
B. Bartczak, D. Gierczycka-Zbrożek, Z. Gronostajski, Z. Polak, A. Tobota, The use of thin-walled sections for energy absorbing components: a review. Arch. Civ. Mech. Eng. 10 (2010) 5-19.
DOI: 10.1016/s1644-9665(12)60027-2
Google Scholar
[2]
A. Weidner, A. Uller, A. Weiß, H. Biermann, Ultrafine grained high-alloyed austenitic TRIP steel. Mater. Sci. Eng. A 571 (2013) 68-76.
DOI: 10.1016/j.msea.2013.02.008
Google Scholar
[3]
A. Grajcar, P. Skrzypczyk, D. Woźniak, Thermomechanically rolled medium-Mn steels containing retained austenite. Arch. Metall. Mater. 59/4 (2014) 1691-1697.
DOI: 10.2478/amm-2014-0286
Google Scholar
[4]
X. Xiaochuan, B. Chen, H. Wang, W. Li, The effect of morphology on the stability of retained austenite in quenched and portioned steel. Scr. Mater. 68/5 (2013) 321-324.
Google Scholar
[5]
E. De Moor, D.K. Matlock, J.G. Speer, M.J. Marwin, Austenite stabilization through manganese enrichment, Scr. Mater. 64 (2011) 185-188.
DOI: 10.1016/j.scriptamat.2010.09.040
Google Scholar
[6]
W. Borek, M. Lis, K. Gołombek, P. Sakiewicz, K. Piotrowski, Effect of plastic deformation rate at room temperature on structure and mechanical properties of high-Mn austenitic Mn-Al-Si 25-3-3 type steel. Arch. Mat. Sci. Eng. 96 (2019) 22-31.
DOI: 10.5604/01.3001.0013.1989
Google Scholar
[7]
Z. Gronostajski, A. Niechajowicz, R. Kuziak, J. Krawczyk, S. Polak, The effect of the strain rate on the stress-strain curve and microstructure of AHSS. J. Mater. Proc. Tech. 242 (2017) 246-259.
DOI: 10.1016/j.jmatprotec.2016.11.023
Google Scholar
[8]
A. Śmiglewicz, M. Jabłońska, W. Moćko, K. Kowalczyk. E. Hadasik, Properties and structure of X30MnAlSi26-4-3 high strength steel subjected to dynamic compression processes. Arch. Metall. Mater. 62 (2017) 2255-2260.
DOI: 10.1515/amm-2017-0332
Google Scholar
[9]
B. Grzegorczyk, A. Kozłowska, M. Morawiec, R. Muszyński, A. Grajcar, Effect of deformation temperature on the Portevin-Le Chatelier effect in medium-Mn steel. Metals, 9 (2019).
DOI: 10.3390/met9010002
Google Scholar
[10]
M. Jabłońska, K. Kowalczyk, Microstructural aspects of energy absorption of high manganese steels. Proc. Manuf. 27 (2019) 91-97.
DOI: 10.1016/j.promfg.2018.12.049
Google Scholar
[11]
Q. Hao, S. Qin, Y. Liu, X. Zuo, N. Chen, Y. Rong, Dynamic tensile behavior of novel quenching-partitioning-tempering martensitic steel. Heat Treatment and Surface Engineering, (2019).
DOI: 10.1080/25787616.2018.1560144
Google Scholar
[12]
H. Zhongping, H. Yanlin, L. Yunta, W. Qihao, G. Yi, L. Lin, effect of strain rate on deformation behavior of TRIP steels, J. Mater. Proc. Tech. 212/10 (2012) 2141-2147.
Google Scholar
[13]
A. Kozłowska, A. Janik, K. Radwański, A. Grajcar, Microstructure evolution and mechanical stability of retained austenite in medium-Mn steel deformed at different temperatures. Materials, 12 (2019).
DOI: 10.3390/ma12183042
Google Scholar
[14]
Y. Gao, C. Xu, Z.P. He, Y.L. He, L. Li, Response characteristics and adiabatic heating during high strain rate for TRIP steel and DP steel, J. Iron Steel Res. Inter. 22/1 (2015) 48-54.
DOI: 10.1016/s1006-706x(15)60008-5
Google Scholar
[15]
K.T. Park, S.W. Hwang, J.H. Ji, C.S. Lee, Static and dynamic deformation of fully austenitic high Mn steels. Eng. Proc. 10 (2011) 1002-1006.
DOI: 10.1016/j.proeng.2011.04.165
Google Scholar
[16]
G. Sha, X. Sun, T. Liu, Y. Zhu, X. Feng, Deformation localization behavior of the Mg-3.04Lo-0.77Sc alloys under high-strain rate. Chin. J. Mater. Res. 24/6 (2010) 567-571.
Google Scholar
[17]
A. Grajcar, A. Kilarski, A. Kozłowska, Microstructure-property relationship in thermomechanically processed medium-Mn steel with high Al content. Metals, 8 (2018).
DOI: 10.3390/met8110929
Google Scholar