Strain Rate Dependent Mechanical Stability of Retained Austenite in Hot-Rolled Medium-Mn Sheet Steels

Article Preview

Abstract:

The paper presents microstructural and mechanical results of medium manganese steel deformed under high strain rates. The rotary hammer tests at strain rates of 250, 500 and 1000 s-1 were applied. Mechanical properties under dynamic tensile loads were determined. According to the obtained results, when strain rate increased the yield point of the steel increased. An opposite trend was present regarding total elongation. In case of tensile strength, its level is similar for all analyzed deformation rates. The microstructure of the steel after the dynamic tensile test is composed of bainite, martensite and martensitic-austenitic islands. The strain-induced martensitic transformation was identified in microscopic investigations.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

946-951

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Bartczak, D. Gierczycka-Zbrożek, Z. Gronostajski, Z. Polak, A. Tobota, The use of thin-walled sections for energy absorbing components: a review. Arch. Civ. Mech. Eng. 10 (2010) 5-19.

DOI: 10.1016/s1644-9665(12)60027-2

Google Scholar

[2] A. Weidner, A. Uller, A. Weiß, H. Biermann, Ultrafine grained high-alloyed austenitic TRIP steel. Mater. Sci. Eng. A 571 (2013) 68-76.

DOI: 10.1016/j.msea.2013.02.008

Google Scholar

[3] A. Grajcar, P. Skrzypczyk, D. Woźniak, Thermomechanically rolled medium-Mn steels containing retained austenite. Arch. Metall. Mater. 59/4 (2014) 1691-1697.

DOI: 10.2478/amm-2014-0286

Google Scholar

[4] X. Xiaochuan, B. Chen, H. Wang, W. Li, The effect of morphology on the stability of retained austenite in quenched and portioned steel. Scr. Mater. 68/5 (2013) 321-324.

Google Scholar

[5] E. De Moor, D.K. Matlock, J.G. Speer, M.J. Marwin, Austenite stabilization through manganese enrichment, Scr. Mater. 64 (2011) 185-188.

DOI: 10.1016/j.scriptamat.2010.09.040

Google Scholar

[6] W. Borek, M. Lis, K. Gołombek, P. Sakiewicz, K. Piotrowski, Effect of plastic deformation rate at room temperature on structure and mechanical properties of high-Mn austenitic Mn-Al-Si 25-3-3 type steel. Arch. Mat. Sci. Eng. 96 (2019) 22-31.

DOI: 10.5604/01.3001.0013.1989

Google Scholar

[7] Z. Gronostajski, A. Niechajowicz, R. Kuziak, J. Krawczyk, S. Polak, The effect of the strain rate on the stress-strain curve and microstructure of AHSS. J. Mater. Proc. Tech. 242 (2017) 246-259.

DOI: 10.1016/j.jmatprotec.2016.11.023

Google Scholar

[8] A. Śmiglewicz, M. Jabłońska, W. Moćko, K. Kowalczyk. E. Hadasik, Properties and structure of X30MnAlSi26-4-3 high strength steel subjected to dynamic compression processes. Arch. Metall. Mater. 62 (2017) 2255-2260.

DOI: 10.1515/amm-2017-0332

Google Scholar

[9] B. Grzegorczyk, A. Kozłowska, M. Morawiec, R. Muszyński, A. Grajcar, Effect of deformation temperature on the Portevin-Le Chatelier effect in medium-Mn steel. Metals, 9 (2019).

DOI: 10.3390/met9010002

Google Scholar

[10] M. Jabłońska, K. Kowalczyk, Microstructural aspects of energy absorption of high manganese steels. Proc. Manuf. 27 (2019) 91-97.

DOI: 10.1016/j.promfg.2018.12.049

Google Scholar

[11] Q. Hao, S. Qin, Y. Liu, X. Zuo, N. Chen, Y. Rong, Dynamic tensile behavior of novel quenching-partitioning-tempering martensitic steel. Heat Treatment and Surface Engineering, (2019).

DOI: 10.1080/25787616.2018.1560144

Google Scholar

[12] H. Zhongping, H. Yanlin, L. Yunta, W. Qihao, G. Yi, L. Lin, effect of strain rate on deformation behavior of TRIP steels, J. Mater. Proc. Tech. 212/10 (2012) 2141-2147.

Google Scholar

[13] A. Kozłowska, A. Janik, K. Radwański, A. Grajcar, Microstructure evolution and mechanical stability of retained austenite in medium-Mn steel deformed at different temperatures. Materials, 12 (2019).

DOI: 10.3390/ma12183042

Google Scholar

[14] Y. Gao, C. Xu, Z.P. He, Y.L. He, L. Li, Response characteristics and adiabatic heating during high strain rate for TRIP steel and DP steel, J. Iron Steel Res. Inter. 22/1 (2015) 48-54.

DOI: 10.1016/s1006-706x(15)60008-5

Google Scholar

[15] K.T. Park, S.W. Hwang, J.H. Ji, C.S. Lee, Static and dynamic deformation of fully austenitic high Mn steels. Eng. Proc. 10 (2011) 1002-1006.

DOI: 10.1016/j.proeng.2011.04.165

Google Scholar

[16] G. Sha, X. Sun, T. Liu, Y. Zhu, X. Feng, Deformation localization behavior of the Mg-3.04Lo-0.77Sc alloys under high-strain rate. Chin. J. Mater. Res. 24/6 (2010) 567-571.

Google Scholar

[17] A. Grajcar, A. Kilarski, A. Kozłowska, Microstructure-property relationship in thermomechanically processed medium-Mn steel with high Al content. Metals, 8 (2018).

DOI: 10.3390/met8110929

Google Scholar