Effect of Ash-Slag Mix and Polypropylene Fiber on the Performances of Concrete Composite

Article Preview

Abstract:

The article is devoted to determining the patterns of improving the performance of concrete using hydro-remote ash-slag mix and polypropylene fiber. For this, a four-step methodology was developed for producing purified aluminosilicates from ash-slag mix. A set of experimental studies included the study of both raw materials and developed composites. The compressive strength, flexural strength, and freeze-thaw resistance were chosen as the target characteristics. The mechanism of the effect of purified aluminosilicates on the compaction of the composite structure was determined. At the same time, polypropylene fiber effectively inhibits the formation of cracks and they growth. The optimal composition is the replacement of cement with an ash-slag mix in an amount of 50% and in the presence of fiber. In this case, the compressive strength was increased by 19%, and the flexural strength by 122% compared with the reference composition. Thus, it was proved that both hydro-remote ash-slag mix and polypropylene fiber, and especially from combined use, make it possible to create effective fiber-reinforced concrete with excellent mechanical and durability characteristics.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1017)

Pages:

1-10

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.A. Wright, S. Kemp, I. Williams, Carbon footprinting,: Towards a universally accepted definition, Carbon Manag. (2011). https://doi.org/10.4155/cmt.10.39.

DOI: 10.4155/cmt.10.39

Google Scholar

[2] X.Y. Zhuang, L. Chen, S. Komarneni, C.H. Zhou, D.S. Tong, H.M. Yang, W.H. Yu, H. Wang, Fly ash-based geopolymer: clean production, properties and applications, J. Clean. Prod. 125 (2016) 253–267. https://doi.org/10.1016/J.JCLEPRO.2016.03.019.

DOI: 10.1016/j.jclepro.2016.03.019

Google Scholar

[3] A. Nazari, J.G. Sanjayan, Handbook of Low Carbon Concrete, 2016. https://doi.org/10.1016/c2015-0-01844-5.

Google Scholar

[4] R. Fediuk, R. Timokhin, A. Mochalov, K. Otsokov, I. Lashina, Performance properties of high-density impermeable cementitious paste, J. Mater. Civ. Eng. (2019). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002633.

DOI: 10.1061/(asce)mt.1943-5533.0002633

Google Scholar

[5] S. V. Klyuev, T.A. Khezhev, Y. V. Pukharenko, A. V. Klyuev, Fiber concrete on the basis of composite binder and technogenic raw materials, Mater. Sci. Forum. (2018). https://doi.org/10.4028/www.scientific.net/MSF.931.603.

DOI: 10.4028/www.scientific.net/msf.931.603

Google Scholar

[6] R.S. Fediuk, A.K. Smoliakov, R.A. Timokhin, V.O. Batarshin, Y.G. Yevdokimova, Using thermal power plants waste for building materials, in: IOP Conf. Ser. Earth Environ. Sci., 2017. https://doi.org/10.1088/1755-1315/87/9/092010.

DOI: 10.1088/1755-1315/87/9/092010

Google Scholar

[7] S.V. Klyuev, A.V. Klyuev, E.S. Shorstova, Fiber concrete for 3-d additive technologies, Materials Science Forum. 974 (2019) 367–372.

DOI: 10.4028/www.scientific.net/msf.974.367

Google Scholar

[8] S.V. Klyuev, A.V. Klyuev, E.S. Shorstova, The micro silicon additive effects on the fine-grassed concrete properties for 3-d additive technologies, Materials Science Forum. 974 (2019) 131–135.

DOI: 10.4028/www.scientific.net/msf.974.131

Google Scholar

[9] M. Mazloom, A.A. Ramezanianpour, J.J. Brooks, Effect of silica fume on mechanical properties of high-strength concrete, Cem. Concr. Compos. (2004). https://doi.org/10.1016/S0958-9465(03)00017-9.

DOI: 10.1016/s0958-9465(03)00017-9

Google Scholar

[10] M.A. Mosaberpanah, O. Eren, A.R. Tarassoly, The effect of nano-silica and waste glass powder on mechanical, rheological, and shrinkage properties of UHPC using response surface methodology, J. Mater. Res. Technol. (2018). https://doi.org/10.1016/j.jmrt.2018.06.011.

DOI: 10.1016/j.jmrt.2018.06.011

Google Scholar

[11] R.S. Fediuk, V.S. Lesovik, A.P. Svintsov, A.V. Mochalov, S.V. Kulichkov, N.Y. Stoyushko, N.A. Gladkova, R.A. Timokhin, Self-compacting concrete using pretreatmented rice husk ash, Mag. Civ. Eng. 79 (2018). https://doi.org/10.18720/MCE.79.7.

Google Scholar

[12] S.V. Klyuev, A.V. Klyuev, E.S. Shorstova, Fiber concrete for 3-d additive technologies, Construction Materials and Products. 2 (4) (2019) 14–20.

DOI: 10.34031/2618-7183-2019-2-4-14-20

Google Scholar

[13] Yu.V. Denisova, Additive technology in construction, Construction Materials and Products. 1(3) (2018) 33–42.

Google Scholar

[14] P.S. Deb, P.K. Sarker, S. Barbhuiya, Sorptivity and acid resistance of ambient-cured geopolymer mortars containing nano-silica, Cem. Concr. Compos. (2016). https://doi.org/10.1016/j.cemconcomp.2016.06.017.

DOI: 10.1016/j.cemconcomp.2016.06.017

Google Scholar

[15] D.Y. Yoo, N. Banthia, Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review, Cem. Concr. Compos. (2016). https://doi.org/10.1016/j.cemconcomp.2016.08.001.

DOI: 10.1016/j.cemconcomp.2016.08.001

Google Scholar

[16] E.P. Kearsley, P.J. Wainwright, Porosity and permeability of foamed concrete, Cem. Concr. Res. (2001). https://doi.org/10.1016/S0008-8846(01)00490-2.

Google Scholar

[17] I. Mandilaras, M. Stamatiadou, D. Katsourinis, G. Zannis, M. Founti, Experimental thermal characterization of a Mediterranean residential building with PCM gypsum board walls, Build. Environ. (2013). https://doi.org/10.1016/j.buildenv.2012.12.007.

DOI: 10.1016/j.buildenv.2012.12.007

Google Scholar

[18] B. Zegardło, M. Szeląg, P. Ogrodnik, Ultra-high strength concrete made with recycled aggregate from sanitary ceramic wastes – The method of production and the interfacial transition zone, Constr. Build. Mater. (2016). https://doi.org/10.1016/j.conbuildmat.2016.06.112.

DOI: 10.1016/j.conbuildmat.2016.06.112

Google Scholar

[19] A. Mohajerani, J. Vajna, T.H.H. Cheung, H. Kurmus, A. Arulrajah, S. Horpibulsuk, Practical recycling applications of crushed waste glass in construction materials: A review, Constr. Build. Mater. (2017). https://doi.org/10.1016/j.conbuildmat.2017.09.005.

DOI: 10.1016/j.conbuildmat.2017.09.005

Google Scholar

[20] G. Murali, K. Ramprasad, A feasibility of enhancing the impact strength of novel layered two stage fibrous concrete slabs, Eng. Struct. (2018). https://doi.org/10.1016/j.engstruct.2018.08.034.

DOI: 10.1016/j.engstruct.2018.08.034

Google Scholar