Effect of Mixing Procedure and Chemical Composition on Physical and Mechanical Performance of Geopolymers

Article Preview

Abstract:

Nowadays geopolymer is promising and relevant material that can be effectively used in wide range of application areas. It is possible because of there are a lot of potential sources of raw materials for geopolymer synthesis. Raw components are the one of the key parameters that effect on geopolymer performance. On the other hands, the technological stages of geopolymer synthesis is no less important factor. The purpose of this study was to determine effect of technological parameters of geopolymer synthesis such as component composition of solid state phase, alkaline activator preparation and its introduction onto geopolymer paste as well as curing temperature on performance characteristics of geopolymer. Fly-ash based geopolymer samples were prepared with adding of different mineral components: Portland cement (PC), kaolin, metakaolin; different curing temperature conditions: ambient temperature and temperature treatment at 70 °C in oven during 24 hours; different methods of preparation and application of alkaline activator: using of fresh alkaline solution and using alkaline solution after 24 hours of cooling. The results show that efficiency of curing temperature conditions strongly depend on component composition of geopolymer paste. Samples, containing PC and metakaolin demonstrate better characteristics after curing under ambient temperature. Samples, containing kaolin and reference composition (fly ash only) the temperature treatment in oven is the best curing method (increasing in compressive strength up to 13 times). Using alkaline solution of NaOH after 24 hours of cooling gives a good effect on geopolymerization process and provides increasing in compressive strength value from 13 to 84 % for all experimental geopolymer pastes. However, average density for all compositions is varied slightly.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1017)

Pages:

41-50

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Davidovits, Solid phase synthesis of a mineral block polymer by low temperature polycondensation of aluminosilicate polymers, IUPAC International Symposium on Macromolecules Stockholm; Sept. Topic III, New Polymers of high stability, (1976).

Google Scholar

[2] T. Bakharev, Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing, Cement Concrete Research, 36 (2006) 1134-1147.

DOI: 10.1016/j.cemconres.2006.03.022

Google Scholar

[3] E. Gartner, H. Hirao, A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete, Cement Concrete Research, 78 (2015) 126-142.

DOI: 10.1016/j.cemconres.2015.04.012

Google Scholar

[4] A. Mehta, R. Siddique, An overview of geopolymers derived from industrial by-products, Construction and Building Materials,127 (2016) 183-198.

DOI: 10.1016/j.conbuildmat.2016.09.136

Google Scholar

[5] J.S.J. van Deventer, J.L. Provis, P. Duxson, Technical and commercial progress in the adoption of geopolymer cement, Mineral Engineering, 29 (2012) 89-104.

DOI: 10.1016/j.mineng.2011.09.009

Google Scholar

[6] F. Pacheco-Torgal, J. Castro-Gomes, S. Jalali, Alkali-activated binders: a review: part 1. Historical background, terminology, reaction mechanisms and hydration products, Construction and Building Materials, 22 (2008) 1305-1314.

DOI: 10.1016/j.conbuildmat.2007.10.015

Google Scholar

[7] A.A. Volodchenko, Influence of artificial calcium hydrosilicates on the hardening processes and properties of non-autoclave silicate materials based on unconventional aluminosilicate raw materials, Construction Materials and Products. 3(2) (2020) 19–28.

DOI: 10.34031/2618-7183-2020-3-2-19-28

Google Scholar

[8] J. L. Provis, J. S. J. van Deventer, Introduction to geopolymers. Geopolymers - Structure, Processing, Properties and Industrial Applications, Woodhead Publishing and CRC Press, Cambridge and Boca Raton, (2009).

DOI: 10.1533/9781845696382.1

Google Scholar

[9] M.R. Nakhaev, M.Sh. Salamanova, Z.Kh. Ismailova, Regularities of the processes of formation of the structure and strength of a clinker-free binder of alkaline activation, Construction Materials and Products. 3(1) (2020) 21–29.

DOI: 10.34031/2618-7183-2020-3-1-21-29

Google Scholar

[10] J. Davidovits, Geopolymer Chemistry and Applications. 3rd edition. Institut Géopolymère, Geopolymer Institute, Saint-Quentin, France, (2011).

Google Scholar

[11] N. I. Kozhukhova, I. V. Zhernovsky, M. S. Lebedev, K. Sobolev, Influence of Fe component from milling yield on characteristics of perlite based geopolymers, IOP Conference Series Materials Science and Engineering, 560 (2019) 012148.

DOI: 10.1088/1757-899x/560/1/012148

Google Scholar

[12] V. I. Korneev, Geopolymers and distinctive characteristics of them, Cement and its Applications, 4 (2010) 51–55.

Google Scholar

[13] J. Davidovits, M. Morris, The pyramids: en enigma solved, Hippocrene Books, New York, (1988).

Google Scholar

[14] M. Torres-Carrasco, F. Puertas, Alkaline activation of different aluminosilicates as an alternative to Portland cement: alkali activated cements or geopolymersm, Revista ingenieria de construccion, 32(2) (2017) 5–12.

Google Scholar

[15] J. Davidovits, Chemistry of geopolymeric systems, terminology, Geopolymere: '99 International Conference, Saint-Quentin, France, (1999).

Google Scholar

[16] J. Davidovits, Geopolymer chemistry and properties, Proceedings of the 1st International Conference on Geopolymer, 1 (1988) 25–48.

Google Scholar

[17] J. S. J. Van Deventer, L. Provis, P. Duxson, Technical and commercial progress in the adoption of geopolymer cement, Minerals Engineering, 29 (2012) 89–104.

DOI: 10.1016/j.mineng.2011.09.009

Google Scholar

[18] C. Shi, P. V. Krivenko, D. M. Roy, Alkali-activated cements and concrete, Taylor & Francis, Abingdon, UK, 2005, 392.

Google Scholar

[19] C. Shi, P.Krivenko, D. Roy, Alkali-Activated Cements and Concretes, Taylor and Francis, London and New York, (2006).

DOI: 10.4324/9780203390672

Google Scholar

[20] P. Prochon, Z. Zhao, L. Courard, T. Piotrowski, F. Michel, A. Garbacz, Influence of Activators on Mechanical Properties of Modified Fly Ash Based Geopolymer Mortars, Materials (Basel), 13(5) (2020) 1033.

DOI: 10.3390/ma13051033

Google Scholar

[21] Mohd Mustafa Al Bakri Abdullah, H. Kamarudin, M. Binhussain, Rafiza Abdul Razak, Zarina Yahya Effect of Na2SiO3/NaOH Ratios and NaOH Molarities on Compressive Strength of Fly-Ash-Based Geopolymer ACI Materials Journal, 109(5) (2012) 503-508.

DOI: 10.14359/51684080

Google Scholar

[22] N. Kozhukhova, N. Kadyshev, A. Cherevatova, E. Voitovich, Reasonability of application of slags from metallurgy industry in road construction, Advances in Intelligent Systems and Computing, 692 (2017) 776–782.

DOI: 10.1007/978-3-319-70987-1_82

Google Scholar

[23] M. Kovtun, E. P. Kearsley, J. Shekhovtsova, Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate, Cement and Concrete Research. 72 (2015) 1–9 https://doi.org/10.1016/j.cemconres.2015.02.014.

DOI: 10.1016/j.cemconres.2015.02.014

Google Scholar

[24] M. Torres-Carrasco, F. Puertas, Alkaline activation of different aluminosilicates as an alternative to Portland cement: alkali activated cements or geopolymers, Revista Ingenieria de Construccion, 32(2) (2017) 5–12, http://dx.doi.org/10.4067/S0718-50732017000200001.

Google Scholar

[25] N. I. Kozhukhova, V. V. Strokova, R.V. Chizhov, M. I. Kozhukhova, Chemical reactivity assessment method of nanostructured low calcium aluminosilicates, Construction Materials and Products, 2(3) (2019) 5–11.

DOI: 10.34031/2618-7183-2019-2-3-5-11

Google Scholar

[26] N. I. Kozhukhova, I. V. Zhernovskaya, A. V. Cherevatova, K. G. Sobolev, Role of Fe-bearing component in perlite-based geopolymer when structural and phase transformations, Bulletin of BSTU named after V.G. Shukhov, 2(2020) 126–133.

DOI: 10.34031/2071-7318-2020-5-2-126-133

Google Scholar

[27] P. Duxson, J. L. Provis, Designing Precursors for Geopolymer Cements, Journal of the American Ceramic Society, 91(12) (2008) 864-3869.

DOI: 10.1111/j.1551-2916.2008.02787.x

Google Scholar

[28] J. Shekhovtsova, I. Zhernovsky, M.Kovtun, N. Kozhukhova, I. Zhernovskaya, E. P. Kearsley, Estimation of fly ash reactivity for use in alkali-activated cements - a step towards sustainable building material and waste utilization, Journal of Cleaner Production, 178 (2018) 22–33.

DOI: 10.1016/j.jclepro.2017.12.270

Google Scholar

[29] C. N. Livi, W. L. Repette, Effect of NaOH concentration and curing regime on geopolymer, // Revista IBRACON de Estruturas e Materiais, 10(6) (2017) https://doi.org/10.1590/s1983-41952017000600003.

DOI: 10.1590/s1983-41952017000600003

Google Scholar

[30] J. J. Ekaputri, I. S. Mutiara, S. Nurminarsih, N. V. Chanh, K. Maekawa, D. H. E. Setiamarga, The effect of steam curing on chloride penetration in geopolymer concrete, MATEC Web of Conferences 138, (2017) 01019.

DOI: 10.1051/matecconf/201713801019

Google Scholar

[31] Y. M. Liew, H. Kamarudin, A. M. Mustafa Al Bakri, M. Bnhussain, M. Luqman, I. Khairul Nizar, C. M. Ruzaidi, and C. Y Effect of Curing Regimes on Metakaolin Geopolymer Pastes Produced from Geopolymer Powder. Heah, Effect of Curing Regimes on Metakaolin Geopolymer Pastes Produced from Geopolymer Powder, 626 (2013) 931-936.

DOI: 10.4028/www.scientific.net/amr.626.931

Google Scholar

[32] Z. Warid Wazien, Mohd Mustafa Al Bakri Abdullah, Rafiza Abd. Razak, M. A. Z. Mohd Remy Rozainy, Muhammad Faheem Mohd Tahir, Strength and Density of Geopolymer Mortar Cured at Ambient Temperature for Use as Repair Material, IOP Conf. Series: Materials Science and Engineering 133 (2016) 012042.

DOI: 10.4028/www.scientific.net/msf.857.382

Google Scholar

[33] L. Biondi, M. Perry, C. Vlachakis, Z. Wu, A. Hamilton, J. McAlorum, Ambient Cured Fly Ash Geopolymer Coatings for Concrete, Materials, 12(923) (2019).

DOI: 10.3390/ma12060923

Google Scholar

[34] S. Riahi, A. Nemati, A. R. Khodabandeh, S. Baghshahi, The effect of mixing molar ratios and sand particles on microstructure and mechanical properties of metakaolin-based geopolymers, Materials Chemistry and Physics, 240 (2020) 122223. In Press.

DOI: 10.1016/j.matchemphys.2019.122223

Google Scholar

[35] C. Kuenzel, J. Vandeperre, S. Donatello, A. R. Boccaccini, C. Cheeseman, Ambient temperature drying shrinkage and cracking in metakaolin-based geopolymers, J. Am. Ceram. Soc. 95(10) (2012) 3270–3277.

DOI: 10.1111/j.1551-2916.2012.05380.x

Google Scholar

[36] M. Lahoti, P. Narang, K. H. Tan, E. H. Yang, Mix design factors and strength prediction of metakaolin-based geopolymer, Ceram. Int., 43(2017) 11433–11441.

DOI: 10.1016/j.ceramint.2017.06.006

Google Scholar

[37] V. F. F. Barbosa, K. J. D. Mackenzie, C. Thaumaturgo, Synthesis and characterization of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers, Int. J. Inorg. Mater., 2(4) (2000) 309–317.

DOI: 10.1016/s1466-6049(00)00041-6

Google Scholar

[38] P. Duxson, J. L. Provis, G. C. Lukey, S. W. Mallicoat, W. M. Kriven, J. S. J. van Deventer, Understanding the relationship between geopolymer composition, microstructure and mechanical properties, Colloid. Surf. Physicochem. Eng. Asp., 269 (2005) 47–58.

DOI: 10.1016/j.colsurfa.2005.06.060

Google Scholar

[39] J. L. Provis, J. S. J. van Deventer, Geopolymers: structures, processing, properties and industrial applications, Woodhead publishing limited, Cambridge, (2009).

Google Scholar

[40] R. R. Lloyd, J. L. Provis, J. S. J. van Deventer, Accelerated ageing of geopolymers, Geopolymers: Structures, Processing, Properties and Industrial Applications, Woodhead, Cambridge, UK, (2009).

Google Scholar