[1]
J. Davidovits, Solid phase synthesis of a mineral block polymer by low temperature polycondensation of aluminosilicate polymers, IUPAC International Symposium on Macromolecules Stockholm; Sept. Topic III, New Polymers of high stability, (1976).
Google Scholar
[2]
T. Bakharev, Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing, Cement Concrete Research, 36 (2006) 1134-1147.
DOI: 10.1016/j.cemconres.2006.03.022
Google Scholar
[3]
E. Gartner, H. Hirao, A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete, Cement Concrete Research, 78 (2015) 126-142.
DOI: 10.1016/j.cemconres.2015.04.012
Google Scholar
[4]
A. Mehta, R. Siddique, An overview of geopolymers derived from industrial by-products, Construction and Building Materials,127 (2016) 183-198.
DOI: 10.1016/j.conbuildmat.2016.09.136
Google Scholar
[5]
J.S.J. van Deventer, J.L. Provis, P. Duxson, Technical and commercial progress in the adoption of geopolymer cement, Mineral Engineering, 29 (2012) 89-104.
DOI: 10.1016/j.mineng.2011.09.009
Google Scholar
[6]
F. Pacheco-Torgal, J. Castro-Gomes, S. Jalali, Alkali-activated binders: a review: part 1. Historical background, terminology, reaction mechanisms and hydration products, Construction and Building Materials, 22 (2008) 1305-1314.
DOI: 10.1016/j.conbuildmat.2007.10.015
Google Scholar
[7]
A.A. Volodchenko, Influence of artificial calcium hydrosilicates on the hardening processes and properties of non-autoclave silicate materials based on unconventional aluminosilicate raw materials, Construction Materials and Products. 3(2) (2020) 19–28.
DOI: 10.34031/2618-7183-2020-3-2-19-28
Google Scholar
[8]
J. L. Provis, J. S. J. van Deventer, Introduction to geopolymers. Geopolymers - Structure, Processing, Properties and Industrial Applications, Woodhead Publishing and CRC Press, Cambridge and Boca Raton, (2009).
DOI: 10.1533/9781845696382.1
Google Scholar
[9]
M.R. Nakhaev, M.Sh. Salamanova, Z.Kh. Ismailova, Regularities of the processes of formation of the structure and strength of a clinker-free binder of alkaline activation, Construction Materials and Products. 3(1) (2020) 21–29.
DOI: 10.34031/2618-7183-2020-3-1-21-29
Google Scholar
[10]
J. Davidovits, Geopolymer Chemistry and Applications. 3rd edition. Institut Géopolymère, Geopolymer Institute, Saint-Quentin, France, (2011).
Google Scholar
[11]
N. I. Kozhukhova, I. V. Zhernovsky, M. S. Lebedev, K. Sobolev, Influence of Fe component from milling yield on characteristics of perlite based geopolymers, IOP Conference Series Materials Science and Engineering, 560 (2019) 012148.
DOI: 10.1088/1757-899x/560/1/012148
Google Scholar
[12]
V. I. Korneev, Geopolymers and distinctive characteristics of them, Cement and its Applications, 4 (2010) 51–55.
Google Scholar
[13]
J. Davidovits, M. Morris, The pyramids: en enigma solved, Hippocrene Books, New York, (1988).
Google Scholar
[14]
M. Torres-Carrasco, F. Puertas, Alkaline activation of different aluminosilicates as an alternative to Portland cement: alkali activated cements or geopolymersm, Revista ingenieria de construccion, 32(2) (2017) 5–12.
Google Scholar
[15]
J. Davidovits, Chemistry of geopolymeric systems, terminology, Geopolymere: '99 International Conference, Saint-Quentin, France, (1999).
Google Scholar
[16]
J. Davidovits, Geopolymer chemistry and properties, Proceedings of the 1st International Conference on Geopolymer, 1 (1988) 25–48.
Google Scholar
[17]
J. S. J. Van Deventer, L. Provis, P. Duxson, Technical and commercial progress in the adoption of geopolymer cement, Minerals Engineering, 29 (2012) 89–104.
DOI: 10.1016/j.mineng.2011.09.009
Google Scholar
[18]
C. Shi, P. V. Krivenko, D. M. Roy, Alkali-activated cements and concrete, Taylor & Francis, Abingdon, UK, 2005, 392.
Google Scholar
[19]
C. Shi, P.Krivenko, D. Roy, Alkali-Activated Cements and Concretes, Taylor and Francis, London and New York, (2006).
DOI: 10.4324/9780203390672
Google Scholar
[20]
P. Prochon, Z. Zhao, L. Courard, T. Piotrowski, F. Michel, A. Garbacz, Influence of Activators on Mechanical Properties of Modified Fly Ash Based Geopolymer Mortars, Materials (Basel), 13(5) (2020) 1033.
DOI: 10.3390/ma13051033
Google Scholar
[21]
Mohd Mustafa Al Bakri Abdullah, H. Kamarudin, M. Binhussain, Rafiza Abdul Razak, Zarina Yahya Effect of Na2SiO3/NaOH Ratios and NaOH Molarities on Compressive Strength of Fly-Ash-Based Geopolymer ACI Materials Journal, 109(5) (2012) 503-508.
DOI: 10.14359/51684080
Google Scholar
[22]
N. Kozhukhova, N. Kadyshev, A. Cherevatova, E. Voitovich, Reasonability of application of slags from metallurgy industry in road construction, Advances in Intelligent Systems and Computing, 692 (2017) 776–782.
DOI: 10.1007/978-3-319-70987-1_82
Google Scholar
[23]
M. Kovtun, E. P. Kearsley, J. Shekhovtsova, Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate, Cement and Concrete Research. 72 (2015) 1–9 https://doi.org/10.1016/j.cemconres.2015.02.014.
DOI: 10.1016/j.cemconres.2015.02.014
Google Scholar
[24]
M. Torres-Carrasco, F. Puertas, Alkaline activation of different aluminosilicates as an alternative to Portland cement: alkali activated cements or geopolymers, Revista Ingenieria de Construccion, 32(2) (2017) 5–12, http://dx.doi.org/10.4067/S0718-50732017000200001.
Google Scholar
[25]
N. I. Kozhukhova, V. V. Strokova, R.V. Chizhov, M. I. Kozhukhova, Chemical reactivity assessment method of nanostructured low calcium aluminosilicates, Construction Materials and Products, 2(3) (2019) 5–11.
DOI: 10.34031/2618-7183-2019-2-3-5-11
Google Scholar
[26]
N. I. Kozhukhova, I. V. Zhernovskaya, A. V. Cherevatova, K. G. Sobolev, Role of Fe-bearing component in perlite-based geopolymer when structural and phase transformations, Bulletin of BSTU named after V.G. Shukhov, 2(2020) 126–133.
DOI: 10.34031/2071-7318-2020-5-2-126-133
Google Scholar
[27]
P. Duxson, J. L. Provis, Designing Precursors for Geopolymer Cements, Journal of the American Ceramic Society, 91(12) (2008) 864-3869.
DOI: 10.1111/j.1551-2916.2008.02787.x
Google Scholar
[28]
J. Shekhovtsova, I. Zhernovsky, M.Kovtun, N. Kozhukhova, I. Zhernovskaya, E. P. Kearsley, Estimation of fly ash reactivity for use in alkali-activated cements - a step towards sustainable building material and waste utilization, Journal of Cleaner Production, 178 (2018) 22–33.
DOI: 10.1016/j.jclepro.2017.12.270
Google Scholar
[29]
C. N. Livi, W. L. Repette, Effect of NaOH concentration and curing regime on geopolymer, // Revista IBRACON de Estruturas e Materiais, 10(6) (2017) https://doi.org/10.1590/s1983-41952017000600003.
DOI: 10.1590/s1983-41952017000600003
Google Scholar
[30]
J. J. Ekaputri, I. S. Mutiara, S. Nurminarsih, N. V. Chanh, K. Maekawa, D. H. E. Setiamarga, The effect of steam curing on chloride penetration in geopolymer concrete, MATEC Web of Conferences 138, (2017) 01019.
DOI: 10.1051/matecconf/201713801019
Google Scholar
[31]
Y. M. Liew, H. Kamarudin, A. M. Mustafa Al Bakri, M. Bnhussain, M. Luqman, I. Khairul Nizar, C. M. Ruzaidi, and C. Y Effect of Curing Regimes on Metakaolin Geopolymer Pastes Produced from Geopolymer Powder. Heah, Effect of Curing Regimes on Metakaolin Geopolymer Pastes Produced from Geopolymer Powder, 626 (2013) 931-936.
DOI: 10.4028/www.scientific.net/amr.626.931
Google Scholar
[32]
Z. Warid Wazien, Mohd Mustafa Al Bakri Abdullah, Rafiza Abd. Razak, M. A. Z. Mohd Remy Rozainy, Muhammad Faheem Mohd Tahir, Strength and Density of Geopolymer Mortar Cured at Ambient Temperature for Use as Repair Material, IOP Conf. Series: Materials Science and Engineering 133 (2016) 012042.
DOI: 10.4028/www.scientific.net/msf.857.382
Google Scholar
[33]
L. Biondi, M. Perry, C. Vlachakis, Z. Wu, A. Hamilton, J. McAlorum, Ambient Cured Fly Ash Geopolymer Coatings for Concrete, Materials, 12(923) (2019).
DOI: 10.3390/ma12060923
Google Scholar
[34]
S. Riahi, A. Nemati, A. R. Khodabandeh, S. Baghshahi, The effect of mixing molar ratios and sand particles on microstructure and mechanical properties of metakaolin-based geopolymers, Materials Chemistry and Physics, 240 (2020) 122223. In Press.
DOI: 10.1016/j.matchemphys.2019.122223
Google Scholar
[35]
C. Kuenzel, J. Vandeperre, S. Donatello, A. R. Boccaccini, C. Cheeseman, Ambient temperature drying shrinkage and cracking in metakaolin-based geopolymers, J. Am. Ceram. Soc. 95(10) (2012) 3270–3277.
DOI: 10.1111/j.1551-2916.2012.05380.x
Google Scholar
[36]
M. Lahoti, P. Narang, K. H. Tan, E. H. Yang, Mix design factors and strength prediction of metakaolin-based geopolymer, Ceram. Int., 43(2017) 11433–11441.
DOI: 10.1016/j.ceramint.2017.06.006
Google Scholar
[37]
V. F. F. Barbosa, K. J. D. Mackenzie, C. Thaumaturgo, Synthesis and characterization of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers, Int. J. Inorg. Mater., 2(4) (2000) 309–317.
DOI: 10.1016/s1466-6049(00)00041-6
Google Scholar
[38]
P. Duxson, J. L. Provis, G. C. Lukey, S. W. Mallicoat, W. M. Kriven, J. S. J. van Deventer, Understanding the relationship between geopolymer composition, microstructure and mechanical properties, Colloid. Surf. Physicochem. Eng. Asp., 269 (2005) 47–58.
DOI: 10.1016/j.colsurfa.2005.06.060
Google Scholar
[39]
J. L. Provis, J. S. J. van Deventer, Geopolymers: structures, processing, properties and industrial applications, Woodhead publishing limited, Cambridge, (2009).
Google Scholar
[40]
R. R. Lloyd, J. L. Provis, J. S. J. van Deventer, Accelerated ageing of geopolymers, Geopolymers: Structures, Processing, Properties and Industrial Applications, Woodhead, Cambridge, UK, (2009).
Google Scholar