Characterization of Different Brazilian Soils for the Production of Ceramic Artifacts

Article Preview

Abstract:

The ceramic materials production industry produces a wide variety of products, such as sealing blocks, roof tiles and shackles, used in civil construction. However, one of the major problems related to the production of these artefacts is the large consumption of natural raw material, which are the clays that are calcined and acquire appropriate technological properties. Brazil is a country that has great prominence in the production of ceramic blocks, used to reduce the existing housing deficit, however the great variability in the characteristics of the soils in the country makes this process very difficult. Thus, the objective of this work was to evaluate the physical and chemical characteristics of four different soils collected in deposits in the city of Campos dos Goytacazes, evaluating right after its technological parameters such as the flexural mechanical strength, water absorption and linear burning retraction of the calcined prismatic specimens at 750, 850 and 1100 °C. The results showed that the collected soils have adequate characteristics for the production of ceramic blocks at a temperature of 1100 °C.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1017)

Pages:

123-132

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.F.S. Ciacco, J.R. Rocha, A.R. Coutinho, The energy consumption in the ceramic tile industry in Brazil, Appl. Therm. Eng. (2017). https://doi.org/10.1016/j.applthermaleng.2016.11.068.

Google Scholar

[2] J.A. Cusidó, L.V. Cremades, C. Soriano, M. Devant, Incorporation of paper sludge in clay brick formulation: Ten years of industrial experience, Appl. Clay Sci. (2015). https://doi.org/10.1016/j.clay.2015.02.027.

DOI: 10.1016/j.clay.2015.02.027

Google Scholar

[3] U. Arena, Process and technological aspects of municipal solid waste gasification. A review, Waste Manag. (2012). https://doi.org/10.1016/j.wasman.2011.09.025.

DOI: 10.1016/j.wasman.2011.09.025

Google Scholar

[4] R.S. Fediuk, V.S. Lesovik, A.P. Svintsov, A.V. Mochalov, S.V. Kulichkov, N.Y. Stoyushko, N.A. Gladkova, R.A. Timokhin, Self-compacting concrete using pretreatmented rice husk ash, Mag. Civ. Eng. 79 (2018). https://doi.org/10.18720/MCE.79.7.

Google Scholar

[5] J. Alexandre, C.L. de Assis Paula e Silva, A.R.G. de Azevedo, G. de Castro Xavier, V.S. Candido, S.N. Monteiro, Processing and properties of soil-cement blocks incorporated with natural grit, in: Mater. Sci. Forum, 2014. https://doi.org/10.4028/www.scientific.net/MSF.798-799.343.

DOI: 10.4028/www.scientific.net/msf.798-799.343

Google Scholar

[6] S.V. Klyuev, A.V. Klyuev, E.S. Shorstova, Fiber concrete for 3-d additive technologies, Construction Materials and Products. 2 (4) (2019) 14–20.

DOI: 10.34031/2618-7183-2019-2-4-14-20

Google Scholar

[7] S.V. Klyuev, A.V. Klyuev, E.S. Shorstova, The micro silicon additive effects on the fine-grassed concrete properties for 3-d additive technologies, Materials Science Forum. 974 (2019) 131–135.

DOI: 10.4028/www.scientific.net/msf.974.131

Google Scholar

[8] S.V. Klyuev, A.V. Klyuev, E.S. Shorstova, Fiber concrete for 3-d additive technologies, Materials Science Forum. 974 (2019) 367–372.

DOI: 10.4028/www.scientific.net/msf.974.367

Google Scholar

[9] E.B. Zanelato, J. Alexandre, A.R.G. de Azevedo, M.T. Marvila, Evaluation of roughcast on the adhesion mechanisms of mortars on ceramic substrates, Mater. Struct. Constr. (2019). https://doi.org/10.1617/s11527-019-1353-x.

DOI: 10.1617/s11527-019-1353-x

Google Scholar

[10] M.R.M. Saade, M.G. da Silva, V. Gomes, H.G. Franco, D. Schwamback, B. Lavor, Material eco-efficiency indicators for brazilian buildings, Smart Sustain. Built Environ. (2014). https://doi.org/10.1108/SASBE-04-2013-0024.

DOI: 10.1108/sasbe-04-2013-0024

Google Scholar

[11] N.G. Azeredo, E.B. Zanelato, J. Alexandre, A.R.G. De Azevedo, G. De Castro Xavier, V.S. Candido, S.N. Monteiro, Performance of precursor materials and fired ceramics for structural blocks, 2015. https://doi.org/10.4028/www.scientific.net/MSF.820.13.

DOI: 10.4028/www.scientific.net/msf.820.13

Google Scholar

[12] R. Fediuk, A. Smoliakov, A. Muraviov, Mechanical properties of fiber-reinforced concrete using composite binders, Adv. Mater. Sci. Eng. 2017 (2017). https://doi.org/10.1155/2017/2316347.

DOI: 10.1155/2017/2316347

Google Scholar

[13] N.A. Cerqueira, M.T. Marvila, A.R.G. De Azevedo, J. Alexandre, G.C. Xavier, V.B. de Souza, S. Un, Analysis of deformability modulus by linear and nonlinear elastic methods in ceramic structural masonry and mortars (Análise do módulo de deformabilidade por métodos elásticos lineares e não lineares em alvenaria estrutural cerâmica e argamassas), 66 (2020) 229–235.

DOI: 10.1590/0366-69132020663792845

Google Scholar

[14] U.S. do Prado, J.C. Bressiani, Panorama da Indústria Cerâmica Brasileira na Última Década, Cerâmica Ind. (2013). https://doi.org/10.4322/cerind.2014.030.

DOI: 10.4322/cerind.2014.030

Google Scholar

[15] N.G. Azeredo, J. Alexandre, A.R.G. Azevedo, C.G. Xavier, S.N. Monteiro, E.B. Zanelato, R.P. Oliveira, Evaluation of structural clay brick masonry units by weibull analysis and brazilian code and specifications, in: TMS Annu. Meet., 2015. https://doi.org/10.1002/9781119093404.ch43.

DOI: 10.1002/9781119093404.ch43

Google Scholar

[16] ABNT, NBR 7181 - Solo - Análise granulométrica, 2016. https://doi.org/01.080.10; 13.220.99.

Google Scholar

[17] ABNT, NBR 6459: Solo- Determinação do Limite de Liquidez, Assoc. Bras. Normas Técnicas. (1984).

Google Scholar

[18] ABNT NBR7180, Determinação do Limite de Plasticidade., ABNT, Rio Janeiro, RJ. (1984).

Google Scholar

[19] ABNT - Associação Brasileira de Normas Técnicas, NBR 6508: Grãos de solos que passam na peneira de 4,8 mm - Determinação da massa específica, (1984).

Google Scholar

[20] ABNT NBR6457, Amostras de solo: Preparação para ensaios de compactação e ensaios de caracterização., ABNT, Rio Janeiro, RJ. (1986).

Google Scholar

[21] A.R.G. de Azevedo, J. Alexandre, G. de C. Xavier, L.G. Pedroti, Recycling paper industry effluent sludge for use in mortars: A sustainability perspective, J. Clean. Prod. (2018). https://doi.org/10.1016/j.jclepro.2018.05.011.

DOI: 10.1016/j.jclepro.2018.05.011

Google Scholar

[22] R. Feduik, Reducing permeability of fiber concrete using composite binders, Spec. Top. Rev. Porous Media. 9 (2018).

DOI: 10.1615/specialtopicsrevporousmedia.v9.i1.100

Google Scholar

[23] A.R.G. Azevedo, T.M. Marvila, W. Júnior Fernandes, J. Alexandre, G.C. Xavier, E.B. Zanelato, N.A. Cerqueira, L.G. Pedroti, B.C. Mendes, Assessing the potential of sludge generated by the pulp and paper industry in assembling locking blocks, J. Build. Eng. (2019). https://doi.org/10.1016/j.jobe.2019.02.012.

DOI: 10.1016/j.jobe.2019.02.012

Google Scholar

[24] R. Fediuk, A. Pak, D. Kuzmin, Fine-Grained Concrete of Composite Binder, in: IOP Conf. Ser. Mater. Sci. Eng., 2017. https://doi.org/10.1088/1757-899X/262/1/012025.

DOI: 10.1088/1757-899x/262/1/012025

Google Scholar

[25] C.M.F. Vieira, R.M. Pinheiro, Incorporation of sedimentary powder rock in roofing tiles body - Part 2: Microstructural evaluation, Ceramica. (2013). https://doi.org/10.1590/S0366-69132013000400002.

Google Scholar

[26] R. Fediuk, A. Smoliakov, N. Stoyushko, Increase in composite binder activity, in: IOP Conf. Ser. Mater. Sci. Eng., 2016. https://doi.org/10.1088/1757-899X/156/1/012042.

DOI: 10.1088/1757-899x/156/1/012042

Google Scholar

[27] L.F. Amaral, J.P.R.G. De Carvalho, B.M. Da Silva, G.C.G. Delaqua, S.N. Monteiro, C.M.F. Vieira, Development of ceramic paver with ornamental rock waste, J. Mater. Res. Technol. (2019). https://doi.org/10.1016/j.jmrt.2018.05.009.

DOI: 10.1016/j.jmrt.2018.05.009

Google Scholar

[28] H. Heystek, CERAMIC RESEARCH AT THE U. S. BUREAU OF MINES., Am. Ceram. Soc. Bull. (1988).

Google Scholar

[29] C.M.F. Vieira, S.S. Teixeira, S.N. Monteiro, Efeito da temperatura de queima nas propriedades e microestrutura de cerâmica vermelha contendo chamote, Ceramica. (2009). https://doi.org/10.1590/s0366-69132009000300014.

DOI: 10.1590/s0366-69132009000300014

Google Scholar

[30] R.S. Fediuk, A.K. Smoliakov, R.A. Timokhin, V.O. Batarshin, Y.G. Yevdokimova, Using thermal power plants waste for building materials, in: IOP Conf. Ser. Earth Environ. Sci., 2017. https://doi.org/10.1088/1755-1315/87/9/092010.

DOI: 10.1088/1755-1315/87/9/092010

Google Scholar

[31] W.J. Vieira de Souza, G. Scur, W. de C. Hilsdorf, Eco-innovation practices in the brazilian ceramic tile industry: The case of the Santa Gertrudes and Criciúma clusters, J. Clean. Prod. (2018). https://doi.org/10.1016/j.jclepro.2018.06.098.

DOI: 10.1016/j.jclepro.2018.06.098

Google Scholar

[32] A.R.G. Azevedo, C.M.F. Vieira, W.M. Ferreira, K.C.P. Faria, L.G. Pedroti, B.C. Mendes, Potential use of ceramic waste as precursor in the geopolymerization reaction for the production of ceramic roof tiles, J. Build. Eng. (2020). https://doi.org/10.1016/j.jobe.2019.101156.

DOI: 10.1016/j.jobe.2019.101156

Google Scholar

[33] Yu.V. Denisova, Additive technology in construction, Construction Materials and Products. 1(3) (2018) 33–42.

Google Scholar