[1]
J. Chen, C. Poon, Photocatalytic construction and building materials: from fundamentals to applications, Building and Environment. 44 (2009) 1899-1906.
DOI: 10.1016/j.buildenv.2009.01.002
Google Scholar
[2]
J. Zhang, Z. Liu, Fabrication and characterization of Eu2+-doped lanthanum-magnesium-gallium /TiO2-based composition as photocatalytic materials for cement concrete-related methyl orange (MO) degradation, Ceramics International. 45 (8) (2019) 10342-10347.
DOI: 10.1016/j.ceramint.2019.02.090
Google Scholar
[3]
M. Perez-Nicolas, I. Navarro-Blasco, J. Fernandez, J. Alvarez, Atmospheric NOx removal: study of cement mortars with iron- and vanadium-doped TiO2 as visible light-sensitive photocatalysts, Construction and Building Materials. 149 (2017) 257-271.
DOI: 10.1016/j.conbuildmat.2017.05.132
Google Scholar
[4]
M. Faraldos, R. Kropp, M. Anderson, K. Sobolev, Photocatalytic hydrophobic concrete coatings to combat air pollution, Catalysis Today. 259 (2015) 228-236.
DOI: 10.1016/j.cattod.2015.07.025
Google Scholar
[5]
A.H. Aissa, E. Puzenat, A. Plassais, J.M. Herrmann, C. Haehnel, C. Guillard, Characterization and photocatalytic performance in air of cementitious materials containing TiO2. Case study of formaldehyde removal, Applied Catalysis B: Environment. 107 (1-2) (2011) 1-8.
DOI: 10.1016/j.apcatb.2011.06.012
Google Scholar
[6]
A. Sasahara, H. Onishi, Surface science approach to photochemistry of TiO2, Solid State Phenomena. 162 (2010) 115-133.
DOI: 10.4028/www.scientific.net/ssp.162.115
Google Scholar
[7]
T. Bak, J. Nowotny, Q. Nguyen, Titanium dioxide photocatalysts: Performance-related properties, Solid State Phenomena. 162 (2010) 329-335.
DOI: 10.4028/www.scientific.net/ssp.162.329
Google Scholar
[8]
T. Bak, T. Norby, J. Nowotny, M. Nowotny, N. Sucher, Titanium dioxide photocatalyst. unresolved problems, Solid State Phenomena. 162 (2010) 77-90.
DOI: 10.4028/www.scientific.net/ssp.162.77
Google Scholar
[9]
M.V. Antonenko, Yu.N. Ogurtsova, V.V. Strokova, E.N. Gubareva Photocatalytic active self-cleaning cement- based materials. Compositions, properties, application, Bulletin of BSTU named after V.G. Shukhov. 3 (2020) 16–25.
DOI: 10.34031/2071-7318-2020-5-3-16-25
Google Scholar
[10]
C.X. Dong, A.P. Xian, E.H. Han, J.K. Shang, C-doped TiO2 with visible light photocatalytic activity, Solid State Phenomena. 121-123 (2007) 939-942.
DOI: 10.4028/www.scientific.net/ssp.121-123.939
Google Scholar
[11]
A. Iwulska, G. Śliwiński, Preparation and characterization of TiO2 nanostructures for catalytic CO2 photoconversion, Solid State Phenomena. 183 (2012) 89-94.
DOI: 10.4028/www.scientific.net/ssp.183.89
Google Scholar
[12]
L. Rozenberga-Voska, J. Grabis, Synthesis and photocatalytic activity of modified TiO2 thin films prepared by spray pyrolysis, Solid State Phenomena. 267 ( 2017) 3-6.
DOI: 10.4028/www.scientific.net/ssp.267.3
Google Scholar
[13]
N. Noor, S. Kamarudin, M. Darus, N. Diyana, M. Yunos, M. Idris, Photocatalytic properties and graphene oxide additional effects in TiO2, Solid State Phenomena. 280 (2018) 65-70.
DOI: 10.4028/www.scientific.net/ssp.280.65
Google Scholar
[14]
A. Shaybadullina, Y. Ginchitskaya, O. Smirnova, Decorative coating based on composite cement-silicate matrix, Solid State Phenomena. 276 (2018) 122-127/.
DOI: 10.4028/www.scientific.net/ssp.276.122
Google Scholar
[15]
Gubareva, E.N., Ogurtsova, Y.N., Strokova, V.V., Labuzova, M.V. Comparative activity evaluation for silica raw materials and photocatalytic composite materials based on them, Obogashchenie Rud. 2019 (6) 25-30.
DOI: 10.17580/or.2019.06.05
Google Scholar
[16]
P. Krivenko, M. Sanytsky, T. Kropyvnytska, The effect of nanosilica on the early strength of alkali-activated portland composite cements, Solid State Phenomena. 296 (2019) 21-26.
DOI: 10.4028/www.scientific.net/ssp.296.21
Google Scholar
[17]
Y.Y. Galkin, S.A. Udodov, X-ray phase analysis of high-aluminate cements under conditions of early compression, Solid State Phenomena. 284 (2018) 1107-1113.
DOI: 10.4028/www.scientific.net/ssp.284.1107
Google Scholar
[18]
V.V. Strokova, L.N. Botsman, Y.N. Ogurtsova, Impact of epicrystallization modifying on characteristics of cement rock and concrete, International Journal of Applied Engineering Research. 10 (2015) 45169-45175.
Google Scholar
[19]
L.A. Solovyov, Full-profile refinement by derivative difference minimization, Journal of Applied Crystallography. 37 (2004) 743-749.
DOI: 10.1107/s0021889804015638
Google Scholar
[20]
T. Westphal, Quantitative Rietveld-Analyse von amorphen Materialien am Beispiel von Hochofenschlacken und Flugaschen, Doctoral thesis, 2007. http://sundoc.bibliothek.uni-halle.de/diss-online/07/07H017/index.htm.
Google Scholar
[21]
H.F.W. Taylor, Cement Chemistry. London, 1990. 475 p.
Google Scholar