[1]
Q. An, L. Huang, S. Wei, R. Zhang, X. Rong, Y. Wang, L. Geng, Enhanced interfacial bonding and superior oxidation resistance of CoCrAlY-TiB2 composite coating fabricated by air plasma spraying, Corros. Sci. 158 (2019) 108102.
DOI: 10.1016/j.corsci.2019.108102
Google Scholar
[2]
E. Hejrani, D. Sebold, W.J. Nowak, G. Mauer, D. Naumenko, R. Vaßen, W.J. Quadakkers, Isothermal and cyclic oxidation behavior of free standing MCrAlY coatings manufactured by high-velocity atmospheric plasma spraying, Surf. Coat. Technol. 313 (2017) 191-201.
DOI: 10.1016/j.surfcoat.2017.01.081
Google Scholar
[3]
H. Rahmani, S. Rastegari, S. Mirdamadi, Effective parameters on microstructure and properties of EB-PVD NiCrAlY coating, Surf. Eng. 31 (2015) 156-165.
DOI: 10.1179/1743294414y.0000000371
Google Scholar
[4]
Y.N. Wu, G. Zhang, Z.C. Feng, B.C. Zhang, Y. Liang, F.J. Liu, Oxidation behavior of laser remelted plasma sprayed NiCrAlY and NiCrAlY-Al2O3 coatings, Surf. Coat. Technol. 138 (2001) 56-60.
DOI: 10.1016/s0257-8972(00)01102-6
Google Scholar
[5]
B.S. Sidhu, D. Puri, S. Prakash, Characterisations of plasma sprayed and laser remelted NiCrAlY bond coats and Ni3Al coatings on boiler tube steels, Mater. Sci. Eng., A 368 (2004) 149-158.
DOI: 10.1016/j.msea.2003.10.281
Google Scholar
[6]
Q. Ma, Y. Li, J. Wang, K. Liu, Microstructure evolution and growth control of ceramic particles in wide-band laser clad Ni60/WC composite coatings, Mater. Des. 92 (2016) 897-905.
DOI: 10.1016/j.matdes.2015.12.121
Google Scholar
[7]
H.S. Tran, J.T. Tchuindjang, H. Paydas, A. Mertens, R.T. Jardin, L. Duchêne, R. Carrus, J. Lecomte-Beckers, A.M. Habraken, 3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations, Mater. Des. 128 (2017) 130-142.
DOI: 10.1016/j.matdes.2017.04.092
Google Scholar
[8]
Z. Gan, G. Yu, X. He, S. Li, Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel, Int. J. Heat Mass Transfer 104 (2017) 28-38.
DOI: 10.1016/j.ijheatmasstransfer.2016.08.049
Google Scholar
[9]
F.K. Mirzade, V.G. Niziev, V.Y. Panchenko, M.D. Khomenko, R.V. Grishaev, S. Pityana, C.V. Rooyen, Kinetic approach in numerical modeling of melting and crystallization at laser cladding with powder injection, Physica B: Condens. Matter. 423 (2013) 69-76.
DOI: 10.1016/j.physb.2013.04.053
Google Scholar
[10]
W.C. Tseng, J.N. Aoh, Simulation study on laser cladding on preplaced powder layer with a tailored laser heat source, Opt. Laser Technol. 48 (2013) 141-152.
DOI: 10.1016/j.optlastec.2012.09.014
Google Scholar
[11]
N.Boutalbi, M.N. Bouaziz, M. Allouche, Influence of temperature-dependent absorptivity on solid surface heated by CO2 and Nd: YAG lasers, J. Laser Appl. 28 (2016) 032004.
DOI: 10.2351/1.4947311
Google Scholar
[12]
K.A. Khor, Y.W. Gu, Effects of residual stress on the performance of plasma sprayed functionally graded ZrO2/NiCoCrAlY coatings, Mater. Sci. Eng., A 277 (2000) 64-76.
DOI: 10.1016/s0921-5093(99)00565-1
Google Scholar
[13]
Y.Gan, Z.L. Tian, H. Dong, China materials engineering ceremony(Vol.3), Chemical Industry Press, Beijing, 2006. (in Chinese).
Google Scholar
[14]
A.T. Cruz, D.F.D. Lange, H.I.M. Castillo, Comparative study of numerical models of the laser forming process, J. Laser Appl. 27 (2015) S29105-1.
DOI: 10.2351/1.4907397
Google Scholar