[1]
ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318M-11) and Commentary. American Concrete Institute. Farmington Hills, MI 48331, pp.155-202. USA, (2011).
DOI: 10.1061/(asce)1076-0431(1996)2:3(120.3)
Google Scholar
[2]
ASCE41-13. Seismic Evaluation and Retrofit of Existing Buildings: American Society of Civil Engineers. Reston, Virginia, (2013).
Google Scholar
[3]
A.M. Elsouri, M.H. Harajli. Seismic response of exterior RC wide beam–narrow column joints: Earthquake resistant versus as-built joints. Engineering Structures 57 (2013): 394-405.
DOI: 10.1016/j.engstruct.2013.09.032
Google Scholar
[4]
A. Masi, G. Santarsiero, G.P. Lignola, G.M. Verderame. Study of the seismic behavior of external RC beam-column joints through experimental tests and numerical simulations. Engineering Structures 52 (2013) 207–219.
DOI: 10.1016/j.engstruct.2013.02.023
Google Scholar
[5]
S. Saptarshi, K. Ramanjaneyulu, N. Balthasar, N. Lakshmanan. Analytical and experimental investigations on seismic performance of exterior beam–column sub assemblages of existing RC-framed building. Earthquake Engineering and Structural Dynamics 42 (2013). 1785–1805.
DOI: 10.1002/eqe.2298
Google Scholar
[6]
A. Eslami, H.R. Ronagh, Experimental investigation of an appropriate anchorage system for flange-bonded carbon fiber–reinforced polymers in retrofitted RC beam–column Joints. ASCE J. Composites for Construction 18 (2014).
DOI: 10.1061/(asce)cc.1943-5614.0000456
Google Scholar
[7]
E. Esmaeeli, J.A.O. Barros, C. Sena, J.L. Fasan, F.R.L. Prizzi, J. Melo, H. Varum. Retrofitting of interior RC beam-column joints using CFRP strengthened SHCC: cast-in-place solution, Composite Structures. 10 (2014).
DOI: 10.1016/j.compstruct.2014.12.012
Google Scholar
[8]
C.D. Vecchio, M.D. Ludovico, A. Prota, G. Manfredi,. Modelling beam-column joints and FRP strengthening in the seismic performance assessment of RC existing frames. Composite Structures (2016).
DOI: 10.1016/j.compstruct.2016.01.077
Google Scholar
[9]
H.S. Shwan, H. A. Razak,. Structural behavior of RC engineered cementitious composite (ECC) exterior beam–column joints under reversed cyclic loading, Construction and Building Materials. 107 (2016) 226–234.
DOI: 10.1016/j.conbuildmat.2016.01.001
Google Scholar
[10]
E. Esmaeeli, J.A.O. Barros, C.J. Sena, H. Varum, J. Melo. Assessment of the efficiency of prefabricated hybrid composite plates (HCPs) for retrofitting of damaged interior RC beam–column joints, Composite Structures 119 (2015), p.24–37.
DOI: 10.1016/j.compstruct.2014.08.024
Google Scholar
[11]
G. Campione, L. Cavaleri, M. Papia. Flexural response of external R.C. beam–column joints externally strengthened with steel cages. Engineering Structures 104 (2015) p.51–64.
DOI: 10.1016/j.engstruct.2015.09.009
Google Scholar
[12]
M.T.D. Risi, P. Ricci, G. Verderame, M., G. Manfredi. Experimental assessment of unreinforced exterior beam–column joints with deformed bars, Engineering Structures 112 (2016) 215–232.
DOI: 10.1016/j.engstruct.2016.01.016
Google Scholar
[13]
G. Kotsovou, H. Mouzakis. Exterior RC beam–column joints: new design approach, Engineering Structures 41 (2012) 307–319.
DOI: 10.1016/j.engstruct.2012.03.049
Google Scholar
[14]
S. Park, K.M. Mosalam, Experimental and analytical studies on reinforced concrete buildings with seismically vulnerable beam- column joints. PEER Report 2012/03 Pacific Earthquake Research Center, Department of Civil and Environmental Engineering University of California, Berkeley (2012).
Google Scholar
[15]
M. Pauletta, D.D. Luca, G. Russo,. Exterior beam column joints shear strength model and design formula. Engineering Structures 94 (2015) p.70–81.
DOI: 10.1016/j.engstruct.2015.03.040
Google Scholar
[16]
B.A. Muhsen, H. Umemura. New Model for Estimation of Shear Strength of Reinforced Concrete Interior Beam-Column Joints, Procedia Engineering 14 (2011) p.2151–2159.
DOI: 10.1016/j.proeng.2011.07.270
Google Scholar
[17]
S. Park, K.M. Mosalam. Parameters for shear strength prediction of exterior beam–column joints without transverse reinforcement, Engineering Structures 36 (2012) p.198–209.
DOI: 10.1016/j.engstruct.2011.11.017
Google Scholar
[18]
C. Lima, E. Martinelli, C. Faella. Capacity models for shear strength of exterior joints in RC frames: experimental assessment and recalibration. Springer Bulletin of Earthquake Engineering 10 (2012) 985–1007.
DOI: 10.1007/s10518-012-9342-2
Google Scholar
[19]
H.F. Wong, J.S. Kuang. Predicting shear strength of RC interior beam–column joints by modified rotating angle softened-truss model, Computers and Structures 133 (2014), p.12–17.
DOI: 10.1016/j.compstruc.2013.11.008
Google Scholar
[20]
G.L. Wang, J.G. Dai, J.G. Teng. Shear strength model for RC beam–column joints under seismic loading, Engineering Structures. 40 (2012). Pp. 350–360.
DOI: 10.1016/j.engstruct.2012.02.038
Google Scholar
[21]
J.S. Jeon, A. Shafieezadeh, R. DesRoches. Statistical models for shear strength of RC beam-column joints using machine-learning techniques, Earthquake Engineering and Structural Dynamics. 43 (2014) p.2075–(2095).
DOI: 10.1002/eqe.2437
Google Scholar
[22]
W. Kassem. Strut-and-tie modelling for the analysis and design of RC beam-column joints, Materials and Structures 49(2016)) p.3459–3476.
DOI: 10.1617/s11527-015-0732-1
Google Scholar
[23]
G. Kotsovou, H. Mouzakis. Seismic design of RC external beam-column joints. Springer, Bulletin of Earthquake Engineering 10 (2012) p.645–677.
DOI: 10.1007/s10518-011-9303-1
Google Scholar
[24]
A.S. Genikomsou, M.A. Polak,. Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS. Engineering Structures 98 (2015) p.38–48.
DOI: 10.1016/j.engstruct.2015.04.016
Google Scholar
[25]
A. Sharma, R., Eligehausen, G.R. Reddy. A new model to simulate joint shear behavior of poorly detailed beam–column connections in RC structures under seismic loads, Part I: Exterior joints, Engineering Structures 33 (2011), p.1034–1051.
DOI: 10.1016/j.engstruct.2010.12.026
Google Scholar
[26]
J. Shayanfar, A.H. Bengar, A. Niroomandi. A proposed model for predicting nonlinear behaviour of RC joints under seismic loads. Materials and Design. 95 (2016) p.563–579.
DOI: 10.1016/j.matdes.2016.01.098
Google Scholar
[27]
Wosatko, A., Pamin, J., Polak M.A. (2015). Application of damage-plasticity models in finite element analysis of punching shear, Computers and structures 151: 73–85.
DOI: 10.1016/j.compstruc.2015.01.008
Google Scholar
[28]
Niroomandi, A., Najafgholipour, M.A., Ronagh, H.R. (2014). Numerical investigation of the affecting parameters on the shear failure of Non-ductile RC exterior joints, Engineering Failure Analysis 46: 62-75.
DOI: 10.1016/j.engfailanal.2014.08.003
Google Scholar
[29]
A.S. Shakir, Q.J. Frayyeh, and M.A.A. Ali. Flexural behavior of slurry infiltrated fiber concrete (sifcon) containing supplementary cementitious materials, Journal of Engineering and Sustainable Development. 22 (2018).
DOI: 10.31272/jeasd.2018.2.32
Google Scholar
[30]
R. Giridhar, Rama P. and Rao M. Determination of mechanical properties of slurry infiltrated concrete (SIFCON),, International Journal for Technological Research in Engineering 2 (2015) pp.1366-1368.
Google Scholar
[31]
E.r.B. Ravindra, and R. Sundara,. Slurry infiltrated fibrous reinforced concrete (SIFCON). DOC, (2010).
Google Scholar
[32]
Y. Mert, A. Serdar, Y. Hüseyin, Y. Halit. Improvement of Self-Compacting Cement Slurry for Autoclaved SIFCON Containing High Volume Class C Fly Ash. Dokuz Eylul University Engineering Faculty Department of Civil Engineering, Buca – İzmir, Turkey, (2010) pp.1-33.
DOI: 10.3311/ppci.8498
Google Scholar
[33]
I.I.R. Montava, J.C. Pomares, and A. Gnozalez. Experimental study of steel reinforced Concrete (SRC) Joints. Applied sciences, MDPI (2017).
DOI: 10.3390/app9081528
Google Scholar
[34]
D. Kachlakev, T. Miller, S. Yim, K. Chansawat, and T. Potisuk. American Society for Testing and Materials. Report SPR 316 (California Polytechnic State University, San Luis. Obispo, CA and Oregon State University, Corvallis OR for Oregon Department of Transportation) (2001).
DOI: 10.31979/mti.2023.2153
Google Scholar
[35]
L.S. Hsu, and C.T.T., Hsu, Complete Stress-Strain Behaviour of High-Strength Concrete under Compression,, Magazine of Concrete Research (ASCE Journal), Vol.46, No.169, (1994) pp.301-312.
DOI: 10.1680/macr.1994.46.169.301
Google Scholar
[36]
A.S. Ali, and Z. Riyadh. Experimental and Numerical Study on the Effects of Size and type of Steel Fibers on the (SIFCON) Concrete Specimens. International Journal of Applied Engineering Research, 13 (2018) pp.1344-1353.
Google Scholar
[37]
S. Salih, Q. Frayyeh, and M. Ali. Fresh and some mechanical properties of SIFCON containing silica fume", MATEC Web of Conferences 162 (2018).
DOI: 10.1051/matecconf/201816202003
Google Scholar
[38]
I. Montava, R. Irles, J.C. Pomares, J. Sequra, J.M. Gadea, and E. Juliá. Numerical simulation of steel reinforced concrete (SRC) joints. Metals, MDPI (2019).
DOI: 10.3390/met9020131
Google Scholar