Antibacterial Activity of Cobalt Ferrite (CoFe2O4) Nanoparticles against Oral Enterococci

Article Preview

Abstract:

This study aimed to show the enhanced effect of nanoparticles cobalt ferrite CoFe2O4 with chlorhexidine on Enterococcus faecium isolated from failure root canal treatment cases. Sol-gel technique was used to prepare the spinel cobalt ferrite CoFe2O4 at 200 °C then sintering at 400 °C & 600 °C, whereas the antimicrobial susceptibility test of nanoparticles was carried out according to the Kirby-Bauer technique compared with chlorhexidine. Fifteen isolates of Enterococcus faecium obtained by inserting sterile paper points in root canals, from patients who consulted the Teaching Hospital of Dentistry College at the University of Mosul, Iraq. For the first time, results showed that the nanoparticle cobalt ferrite CoFe2O4 at 400 °C and 600 °C, when mixed with chlorhexidine, give the mean inhibition zone 8.5334 mm and 8.0667mm respectively, while the pure chlorhexidine was providing a mean inhibition zone of 3.1667 mm, and also the nanoparticles cobalt ferrite in both cases of sintering without mixing, there was no antimicrobial effect. Statistical analysis using Duncan showed significant differences among groups (p < 0.05).

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1021)

Pages:

150-159

Citation:

Online since:

February 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. K. A, Silva; R. Di Corato; F. Gazeau; T. Pellegrino; C. Wilhelm, Magnetophoresis at the nanoscale: Tracking the magnetic targeting e_ciency of nanovectors,, Nanomedicine 7, (2012,) 1-15.

DOI: 10.2217/nnm.12.40

Google Scholar

[2] S.I. Bernad.; D. Susan-Resiga; L. Vekas; E. S. Bernad, Drug targeting investigation in the critical region of the arterial bypass graft,. J. Magn. Magn. Mater. 2019, 475, 14–23.

DOI: 10.1016/j.jmmm.2018.11.108

Google Scholar

[3] S. Wenjing and Ge. Shaohua, Application of Antimicrobial Nanoparticles in Dentistry, Molecules, 24, 1033, (2019) 1-15.

Google Scholar

[4] M. Ana-Paula-Rodrigues, M. Francine-Couto-Lima, A. D-R-Silveira, E. C. R-Araújo, E. Carlos, C. Marcus-Santos, B. A-Figueiroa, L. L. Gonzaga. Silver nanoparticles in resin luting cements: Antibacterial and physiochemical properties,. J Clin Exp Dent., 8 (4) (2016) e 415-22.

Google Scholar

[5] N. Mohammadreza, A. Abbas, G. Ahmad, K. Zahra, M. Hosein, G. Younes, S. Azam, H. Bahram, D. Samira and S. Hashem, Antibiofilm Efficacy of Positively Charged Imidazolium-Based Silver Nanoparticles in Enterococcus faecalis Using Quantitative Real-Time PCR, Jundishapur J Microbiol.; 10(10) (2017) e55616.

DOI: 10.5812/jjm.55616

Google Scholar

[6] F. Wei, W. Yujie, M. Tengjiao, L. Yanyun, F. Bing, Substantivity of Ag–Ca–Si mesoporous nanoparticles on dentin and its ability to inhibit Enterococcus faecalis,. J Mater Sci: Mater Med 27, (2016) 16.

DOI: 10.1007/s10856-015-5633-x

Google Scholar

[7] B. B. F. João, S-S. T. C. Yara, L. G. Marilisa, P-S. André, M. M. Andrea, and M. S. E. Carlos, Development of Intracanal Formulation Containing Silver Nanoparticles, Brazilian Dental Journal 25 (2014) 302-306.

Google Scholar

[8] C. Seetharam, D. Dasarathan, P. Krishnan, P. Saravanan, N. Cruz, and S. R. Manali , Comparative Evaluation of Antimicrobial Efficacy of Silver Nanoparticles and 2% Chlorhexidine Gluconate When Used Alone and in Combination Assessed Using Agar Diffusion Method: An In vitro Study, Contemp Clin Dent; 9 (Suppl 2) . (2018) S204–S209.

DOI: 10.4103/ccd.ccd_869_17

Google Scholar

[9] S. Ali, Z. H. Mohamed, S. K. Marwa, M. Osama, H. A. El Danaf Assessment of Photodynamic Therapy and Nanoparticles Effects on Caries Models, Journal of Medical Sciences, 6 (2018) 289-1295.

Google Scholar

[10] K. Venkatesan, R. Supr'iya, M. P. Kavya Baib, S. Madeswaran, R. Vidya and D. Rajan Babu, Cobalt ferrite (CoFe204) nanoparticles for evaluation of antibacterial activity,, J. Indian Chern. Soc., Vol. 92, (2015) pp.637-639.

Google Scholar

[11] J.M. A. Sulaiman, M. M. Ismail, S. N. Rafeeq & A, Mandal, Enhancement of electromagnetic interference shielding based on Co0.5Zn0.5Fe2O4/PANI‑PTSA nanocomposites, Applied Physics A, 126 (2020) 236.

DOI: 10.1007/s00339-020-3413-z

Google Scholar

[12] S. Ibrahim, H. Shokrollahi, S. Amiri, Ferrite-based magnetic nanofluids used in hyperthermia applications,. J. Magn. Magn. Mater. 324(6), (2012) 903–915.

DOI: 10.1016/j.jmmm.2011.10.017

Google Scholar

[13] S. Amiri, H. Shokrollahi, The role of cobalt ferrite magnetic nanoparticles in medical science,. Mater. Sci. Eng. C 33(1), (2013) 1–8.

Google Scholar

[14] D. S. Mathew, R. S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions,. Chem. Eng. J. 129(1–3) (2007) 51–65.

DOI: 10.1016/j.cej.2006.11.001

Google Scholar

[15] S. Rehman, M.A. Ansari, M.A. Alzohairy, M.N. Alomary, B.R. Jermy, R. Shahzad, N. Tashkandi, and Z.H. Alsalem, Antibacterial and Antifungal Activity of Novel Synthesized Neodymium-Substituted Cobalt Ferrite Nanoparticles for Biomedical Application,, Processes, 7 (2019) 714.

DOI: 10.3390/pr7100714

Google Scholar

[16] A. I. El-Batal, Gharieb S. El-Sayyad, A. El-Ghamery, M. Gobara Response surface methodology optimization of melanin production by Streptomyces cyaneus and synthesis of copper oxide nanoparticles using gamma radiation,. J. Clust. Sci. 28 (2017) 1083–1112.

DOI: 10.1007/s10876-016-1101-0

Google Scholar

[17] A. Bernardi, C. S. Teixeira, The properties of chlorhexidine and undesired effects of its use in endodontics,. Quintessence Int. 46 (2015) 575–82.

Google Scholar

[18] A. A. Suliman, G. Y. Abdul_Rahman, W. M. Al_Ashou, The bactericidal efficiency of Chlorhexidine as an endodontic irrigant,. Al–Rafidain Dent J. 6 (Sp Iss), (2006) 71S-78S‏.

DOI: 10.33899/rden.2005.163263

Google Scholar

[19] R. Anusa, C. Ravichandran, T. V. Rajendran, M.V. Arularasu, E. K. T. Sivakumar, Comparative Investigation of Cobalt ferrite (CoFe2O4) and Cadmium ferrite (CdFe2O4) Nanoparticles for the, Optical Properties and Antibacterial Activity,, Digest Journal of Nanomaterials and Biostructures 14 (2019) 367 – 374.

Google Scholar

[20] M. A. Wikler, F. R. Cockerill…etc., Performance standards for antimicrobial susceptibility testing. Seventeenth informational supplement,, CLSI; Clinical and laboratory standards institutes, 27 (2007) 1-187.

Google Scholar

[21] A. Zapata, S. Ramirez-Arcos. A Comparative Study of McFarland Turbidity Standards and the Densimat Photometer to Determine Bacterial Cell Density,. Curr Microbiol (2015) 70:907–909 DOI 10.1007/s00284-015-0801-2.

DOI: 10.1007/s00284-015-0801-2

Google Scholar

[22] S.N. Rafeeq, M.M. Ismail and J.M. A. Sulaiman, Magnetic and Dielectric Properties of CoFe2O4 and CoxZn1-xFe2O4 Nanoparticles Synthesized Using Sol-Gel Method,, Journal of Magnetics 22 (2017) 406-413.

DOI: 10.4283/jmag.2017.22.3.406

Google Scholar

[23] M. M. Ismail, S. N. Rafeeq, J.M. A. Sulaiman & A, Mandal, Electromagnetic interference shielding and microwave absorption properties of cobalt ferrite CoFe2O4/ polyaniline composite,, Applied Physics A, 124 (2018) 380.

DOI: 10.1007/s00339-018-1808-x

Google Scholar

[24] B. Issa, IM. Obaidat, BI Albiss and Y. Haik" Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications" Int. J. Mol. Sci.,14 (2013) 21266-21305.

DOI: 10.3390/ijms141121266

Google Scholar

[25] N. Sanpo, CC. Berndt, C. Wen & J. Wang, Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications, Acta Biomaterialia 9 (2013) 5830–5837.

DOI: 10.1016/j.actbio.2012.10.037

Google Scholar

[26] K. Byrappa, S. Ohara, T. Adschiri, Nanoparticle's synthesis using supercritical fluid technology – towards biomedical applications,. Adv Drug Deliv Rev; 60 (2008) 299–327‏.

DOI: 10.1016/j.addr.2007.09.001

Google Scholar

[27] H.S. Kafil and M. Asgharzadeh, Vancomycin-Resistant Enteroccus Faecium and Enterococcus Faecalis Isolated from Education Hospital of Iran,. Medica-a journal of clinical medicine. 9 (2014) 323-327.

Google Scholar

[28] R.P. Sharma, S.D Raut, R.M. Mulani, A.S. Kadam, R.S. Mane, Sol–gel auto‑combustion mediated cobalt ferrite nanoparticles: a potential material for antimicrobial applications,, International Nano Letters 9 (2019) 141–147.

DOI: 10.1007/s40089-019-0268-4

Google Scholar

[29] G. Satpathy, E. Manikandan Cobalt Nanoparticle As The Antibacterial Tool: In Vitro, International Journal of Engineering and Advanced Technology (IJEAT) 8 (2019) 3684- 3687.

Google Scholar