Density and Mechanical Properties of Selective Silicon Materials to Produce 3D Printed Paediatric Brain Model

Article Preview

Abstract:

This study presents a step towards exploring the possibility of using silicon materials as a surrogate to produce a multi-material 3D printed soft silicone brain model to be used in the investigation of Traumatic Brain Injury (TBI) in paediatric populations. Silicone represents a popular choice of material due to its viscoelastic properties, 3D printability, and capability to be tuned to possess different properties. Dynamic oscillatory shear tests were carried out for seven types of silicon materials at three different speeds against a different range of frequencies. The mechanical parameters response has been ranked on, which is the most appropriate to try. It also agrees with the range of reported paediatric brain tissue imitating grey and white matter as a surrogate brain material. Utilising of silicone for 3D printing represents a new approach to fabricate surrogate models that closely mimic biofidelic features and advance the medical engineering discipline.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1021)

Pages:

220-230

Citation:

Online since:

February 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Faul, L. Xu, M.M. Wald, V. Coronado, A.M. Dellinger, Traumatic brain injury in the United States: national estimates of prevalence and incidence, Inj. Prev.16 A268 (2002-2006).

DOI: 10.1136/ip.2010.029215.951

Google Scholar

[2] G.T. Fallenstein, V.D. Hulce, J.W. Melvin, Dynamic Mechanical Properties of Human Brain Tissue, J. Biomech. 2 (1969) 217-226.

DOI: 10.1016/0021-9290(69)90079-7

Google Scholar

[3] J.E. Galford, J.H. McElhaney, A viscoelastic study of scalp, brain, and dura, J. Biomech. 3 (1970) 211-221.

DOI: 10.1016/0021-9290(70)90007-2

Google Scholar

[4] E.H. Clayton, G.M. Genin, P.V. Bayly, Transmission, attenuation and reflection of shear waves in the human brain, J R Soc Interface. 9 (2012) 2899-2910.

DOI: 10.1098/rsif.2012.0325

Google Scholar

[5] J. Zhang, M.A. Green, R. Sinkus, L.E. Bilston, Viscoelastic properties of human cerebellum using magnetic resonance elastography, J. Biomech. 44 (2011) 1909-1913.

DOI: 10.1016/j.jbiomech.2011.04.034

Google Scholar

[6] M.A. Green, L.E. Bilston, R. Sinkus, In vivo brain viscoelastic properties measured by magnetic resonance elastography, NMR Biomed. 21 (2008) 755-764.

DOI: 10.1002/nbm.1254

Google Scholar

[7] S.A. Kruse, G.H. Rose, K.J. Glaser, A. Manduca, J.P. Felmlee, C.R. Jack, R.L. Ehman, Magnetic resonance elastography of the brain, J. Neuroimaging. 39 (2008) 231-237.

DOI: 10.1016/j.neuroimage.2007.08.030

Google Scholar

[8] G.A. Khalid, H. Bakhtiarydavijani, W.R. Whittington, R. Prabhu, M.D. Jones, Material Response Characterization of Three Poly Jet Printed Materials Used in a High Fidelity Human Infant Skull, Mater. Today: Proc. 20 (2020) 408-413.

DOI: 10.1016/j.matpr.2019.09.156

Google Scholar

[9] M. Jones, G.A. Khalid, D. Darwall, R. Prabhu, A. Kemp, J.O. Arthurs, P. Theobald., Development and Validation of a Physical Model to Investigate the Biomechanics of Infant Head Impact, Forensic Sci. Int. 276 (2017) 111-119.

DOI: 10.1016/j.forsciint.2017.03.025

Google Scholar

[10] G.A. Khalid, R.K. Prabhu, J.O. Arthurs, M.D. Jones, A Coupled Physical-Computational Methodology for The Investigation of Short Fall, Related Infant Head Impact Injury, Forensic Sci. Int. 300 (2019) 170-186.

DOI: 10.1016/j.forsciint.2019.04.034

Google Scholar

[11] F. Zhu, C Wagner, A. Dal Cengio Leonardi, X. Jin, P. VandeVord., C. Chou, K.H. Yang, A.I. King, Using a gel/plastic surrogate to study the biomechanical response of the head under air shock loading: a combined experimenta l and numerical investigation, Biomech. Model. Mechanobiol. 11(2012) 341-353.

DOI: 10.1007/s10237-011-0314-2

Google Scholar

[12] D.W. Brands, P.H. Bovendeerd, G.W. Peters, J.S. Wismans, M.H. Paas, J.L. Van Bree, Comparison of the dynamic behavior of brain tissue and two model materials, SAE Technical Paper. 99SC21 (1999).

DOI: 10.4271/99sc21

Google Scholar

[13] S.S. Margulies, L.E. Thibault, T.A. Gennarelli, Physical model simulations of brain injury in the primate, J. Biomech.23(1990) 823-836.

DOI: 10.1016/0021-9290(90)90029-3

Google Scholar

[14] A.E. Forte, S. Galvan, F. Manieri, F.R. Baena, D., Dini, A composite hydrogel for brain tissue phantoms, Mater. Des.112 (2016) 227-238.

DOI: 10.1016/j.matdes.2016.09.063

Google Scholar

[15] K. Thibault, S. Margulies, Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria, J. Biomech.31(1998) 1119-1126.

DOI: 10.1016/s0021-9290(98)00122-5

Google Scholar

[16] S.S. Margulies, M.T. Prange, Regional, directional, and age-dependent properties of the brain undergoing large deformation, J. Biomech. 124 (2002) 244-252.

DOI: 10.1115/1.1449907

Google Scholar

[17] B. Rashid, M. Destrade, M.D. Gilchrist, Mechanical characterization of brain tissue in compression at dynamic strain rates, J. Mech. Behav. Biomed. Mater. 10 (2012) 23-38.

DOI: 10.1016/j.jmbbm.2012.01.022

Google Scholar

[18] S. Chatelin, J. Vappou, S. Roth, J.S. Raul, R. Willinger, Towards child versus adult brain mechanical properties, J. Mech. Behav. Biomed. Mater. 6 (2012) 166-173.

DOI: 10.1016/j.jmbbm.2011.09.013

Google Scholar

[19] C. Macosko, Rheology Principles, Measurements and Applications. first ed., New York.

Google Scholar

[20] A. Hill, Rheeology Basic: Introducing The Malern Kinexus a Practical Measurement Perspective, Malvern Instruments Ltd., 2013. Information on http://www.atascientific.com.au.

Google Scholar

[21] Laerd Statistics, One-way ANOVA in SPSS Statistics, (2013a). Information on https://www.statistics.laerd.com/spss-tutorials/one-way-anova-using-spss-statistics.php.

DOI: 10.4135/9781506335254.n6

Google Scholar

[22] A. Smith, C. Grandin, T. Duprez, F. Mataigne, G. Cosnard, Whole brain quantitative CBF and CBV measurements using MRI bolus tracking: Comparison of methodologies, Magn. Reson. Med. 43(2000) 559-564.

DOI: 10.1002/(sici)1522-2594(200004)43:4<559::aid-mrm10>3.0.co;2-n

Google Scholar