[1]
G. Neri, Metal oxide nanostructures for solid state gas sensors: A Recent patent survey, Recent Patents on Materials Science 4 (2011) 146-158.
DOI: 10.2174/1874465611104020146
Google Scholar
[2]
F. M. Othman, A.A. Abdul Hamead and Zena A. Aljanabi, Fabrication of tri metal oxides gas detector for lung inflammation, AIP Conference Proceedings, 020010 (2018) 1–7.
DOI: 10.1063/1.5039169
Google Scholar
[3]
K. Zakrzewska, Mixed oxides as gas sensors, Thin Solid Films, 391 (2001) 229-238.
DOI: 10.1016/s0040-6090(01)00987-7
Google Scholar
[4]
R. N. Bulakhe, and C. D. Lokhande, Chemically deposited cubic structured CdO thin films: Use in liquefied petroleum gas sensor, Sensors and Actuators B: Chemical, 200 (2014) 245–250.
DOI: 10.1016/j.snb.2014.04.061
Google Scholar
[5]
F. Xiangqian, J. Liu ,T. Han, X. Zhang, F. Meng and J. Liu, A three-dimensional hierarchical CdO nanostructure: Preparation and its improved gas-diffusing performance in gas sensor, Sensors and Actuators B: Chemical 184 (2013) 260–267.
DOI: 10.1016/j.snb.2013.04.076
Google Scholar
[6]
N. Han, X. Wu, D. Zhang, G. Shen, H. Liu and Y. Chen, CdO activated Sn-doped ZnO for highly sensitive, selective and stable formaldehyde sensor, Sensors and Actuators B: Chemical, 152(2) (2011) 324–329.
DOI: 10.1016/j.snb.2010.12.029
Google Scholar
[7]
R.J. Deokate, and C.D. Lokhande, Liquefied petroleum gas sensing properties of sprayed nanocrystalline Ga-doped CdO thin films, Sensors and Actuators B: Chemical, 193 (2014) 89–94.
DOI: 10.1016/j.snb.2013.11.060
Google Scholar
[8]
J. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: Overview, Sensors and Actuators B: Chemical, 140(1) (2009) 319–336.
DOI: 10.1016/j.snb.2009.04.026
Google Scholar
[9]
Cleveland, Ohio, CRC Handbook of Chemistry and Physics (1978).
Google Scholar
[10]
P. Patnaik, Handbook of Inorganic Chemicals, McGraw-Hill, (2003).
Google Scholar
[11]
M. Kojim, The Role of liquefied petroleum gas in reducing energy poverty, Extrctive Industrial for Development Series, 25 (2011).
Google Scholar
[12]
C. Woong, S. Park and J. Lee, Punched ZnO nanobelt networks for highly sensitive gas sensors, Sensors and Actuators B: Chemical J., Sensors and Actuators, B174 (2012) 495– 499.
DOI: 10.1016/j.snb.2012.07.094
Google Scholar
[13]
F. M. Othman, A. A. Abdul Hamead and Z A Aljanabi, Gas sensing using Tri-metal oxides for breathe analysis, IOP Conf. Series: Materials Science and Engineering, 454 (2018) 1-7.
DOI: 10.1088/1757-899x/454/1/012060
Google Scholar
[14]
H.A. Sallal, A.A. Abdul-Hamead, F.M. Othman, Effect of nano powder (Al2O3-CaO) addition on the mechanical properties of the polymer blend matrix composite, Defence Technology, 16(2) (2020) 425-431.
DOI: 10.1016/j.dt.2019.07.013
Google Scholar
[15]
A. Rothschild and Y. Komem, The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors, Journal of Applied Physics, 95(11) (2004) 6374 - 6380.
DOI: 10.1063/1.1728314
Google Scholar
[16]
G.F. Fine, and L.M. Cavanagh, Metal oxide semi-conductor gassensors in environmental monitoring, Sensors, 10 (2010) 5469-5502.
DOI: 10.3390/s100605469
Google Scholar
[17]
E.L. Cussler, Diffusion-Mass Transfer in Fluid Systems, Cambridge University Press, 3rd Edition, (2008).
Google Scholar
[18]
D. Strle, B. Štefane, E. Zupanič, M. Trifkovič, M. Maček, G. Jakša, I.Kvasič and I. Muševič, Sensitivity Comparison of Vapor Trace Detection of Explosives Based on Chemo-Mechanical Sensing with Optical Detection and Capacitive Sensing with Electronic Detection, Sensors 14(7) (2014) 11467-11491.
DOI: 10.3390/s140711467
Google Scholar
[19]
Ǘ. Kersen, Gas sensing properties of nano crystalline metal oxide powder produced by thermal deposition and mechanochemical processing, Dissertation of Ph.D., Helsinki University of Technology, Department of Electrical and Communication Engineering, (2003).
Google Scholar
[20]
T.A. Miller, S.D. Bakrania, C. Perez, M.S. Wooldridge 'Nanostructured Tin Dioxide Materials for Gas Sensor Applications, Functional Nanomaterials 30 (2006) 1–24.
Google Scholar
[21]
D. Karnaushenko, D.D. Karnaushenko, D. Makarov, S. Baunack, R. Schäfer and O.G. Schmidt, Self-Assembled On-Chip-Integrated Giant Magneto-Impedance Sensorics, Advanced Materials 27(42) (2015) 6582–6589.
DOI: 10.1002/adma.201503127
Google Scholar
[22]
W. Xi, C.K. Schmidt, S. Sanchez, D.H. Gracias, R. E. Carazo-Salas, S.P. Jackson, and O.G. Schmidt, Rolled-up Functionalized Nanomembranes as Three-Dimensional Cavities for Single Cell Studies, Nano Lett. 14 (2014) 4197-4204.
DOI: 10.1021/nl4042565
Google Scholar
[23]
T. Akamatsu, T. Itoh, N. Izu and W. Shin, NO and NO2 sensing properties of WO3 and Co3O4 based gas sensors, Sensors, 13 (2013) 12467-12481.
DOI: 10.3390/s130912467
Google Scholar
[24]
F. Fine, L. Cavanagh, A. Afonja and R. Binions, Metal oxide semi-conductor gas sensors in environmental monitoring, Sensors, 10( 2010)5469-5502.
DOI: 10.3390/s100605469
Google Scholar
[25]
ET Salim, MA Fakhri, Z Tareq, U Hashim, Electrical and electronic properties of lithium based thin film for photonic application, AIP Conference Proceedings 2213 (1) (2020) 020230.
DOI: 10.1063/5.0000191
Google Scholar
[26]
O.A. Abdulrazzaq, E.T Saleem, Inexpensive near-IR photodetector, Turkish Journal of Physics 30 (2006) 35-39.
Google Scholar
[27]
E.T. Salim, Surface morphology and X-ray diffraction analysis for silicon nanocrystal-based heterostructures, Surface Review and Letters, 20(05) (2013) 1350046.
DOI: 10.1142/s0218625x13500467
Google Scholar
[28]
E.T. Salim, M. A. Fakhri, H. Hassen, Metal oxide nanoparticles suspension for optoelectronic devises fabrication, International Journal of Nanoelectronics and Materials 6(2) (2013) 121-128.
Google Scholar
[29]
E.T. Salim, M.S. Al-Wazny, M.A. Fakhri, Glancing angle reactive pulsed laser deposition (GRPLD) for Bi2O3/Si heterostructure, Modern Physics Letters B, 27(16) (2013) 1350122.
DOI: 10.1142/s0217984913501224
Google Scholar