[1]
M.K. Abbass, M.M. Radhi, R.S.A. Adnan, The effect of Germanium addition on mechanical properties and microstructure of Cu-Al-Ni shape memory alloy, Materials Today: Materialstoday: proceedings 4 (2017) 224-233.
DOI: 10.1016/j.matpr.2017.01.016
Google Scholar
[2]
J.M. Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities, Materials and Design 56 (2014) 1078-1113.
DOI: 10.1016/j.matdes.2013.11.084
Google Scholar
[3]
S.N. Saud, E. Hamzah, T. Abubakar, H.R. Bakhsheshi-Rad, Thermal aging behavior in Cu-Al-Ni-xCo shape memory alloys, J. Therm. Anal. Calorim. 119 (2015) 1273-1284.
DOI: 10.1007/s10973-014-4265-6
Google Scholar
[4]
S.N. Saud, E. Hamzah, T.A. Abubakara, R. Hosseinian, A review on influence of alloying elements on the microstructure and mechanical properties of Cu-Al-Ni shape memory alloys, J. Technologi.: Sci. Eng. 64 (2013) 51-56.
DOI: 10.11113/jt.v64.1338
Google Scholar
[5]
U. Sari., Influences of 2.5 wt% Mn addition on the microstructure and mechanical properties of Cu-Al-Ni shape memory alloys, Int. J. Miner. Metall. Mater. 17 (2010) 192-198.
DOI: 10.1007/s12613-010-0212-0
Google Scholar
[6]
S.N. Saud, E. Hamzaha, T. Abubakara, S. Farahany, Structure-property relationship of Cu-Al-Ni-Fe shape memory alloys in different quenching media, J. of Materi. Eng. and Perform. 23 (2014) 255-261.
DOI: 10.1007/s11665-013-0759-9
Google Scholar
[7]
S.N. Saud, E. Hamzah, T. Abubakar, M.K. Ibrahim, A. Bahador, Effect of a fourth alloying element on the microstructure and mechanical properties of Cu-Al-Ni shape memory alloys, J. Mater. Res. 30 (2015) 2258-2269.
DOI: 10.1557/jmr.2015.196
Google Scholar
[8]
V. Recarte, R.B. Pérez-Sáez, M.L. Nó, J.S. Juan, Evolution of martensitic transformation in Cu-Al-Ni shape memory alloys during low-temperature aging, J. Mater. Res. 14 (1999) 2806-2813.
DOI: 10.1557/jmr.1999.0375
Google Scholar
[9]
P. Rodriguez, G. Guenin, Thermal aging behavior and origin of a CuAlNi shape memory alloy, J. Mater. Sci. Eng.: A 129 (1990) 273-277.
Google Scholar
[10]
W.A. Badawy, M.M. El-Rabiee, N.H. Helal, H. Nady, Effect of nickel content on the electrochemical behavior of Cu-Al-Ni alloys in chloride free neutral solution, Electrochimica Acta 56 (2010) 913-918.
DOI: 10.1016/j.electacta.2010.09.080
Google Scholar
[11]
A.K. Abidali, Z.T.K. Al-Tai, Study the effect of silicon addition on the corrosion behavior and dry sliding wear of CuAlNi shape memory alloy, Iraqi J. Mech. Mater. Eng. 12 (2012) 172-185.
Google Scholar
[12]
R.Z. Alfay, A.M. Takhakh, A.K. Abidali, Effect of Nb Addition on hardness and wear resist of Cu-Al-Ni shape memory alloy fabricated by powder metallurgy, J. Eng. 20 (2014) 42-49.
DOI: 10.1109/beiac.2013.6560141
Google Scholar
[13]
S.N. Saud, E. Hamzah, H.R. Bakhsheshi-Rad, T. Abubakar, Effect of Ta additions on the microstructure, damping, and shape memory behavior of prealloyed Cu-Al-Ni shape memory alloys, Scanning 2017 (2017) 1789454.
DOI: 10.1155/2017/1789454
Google Scholar
[14]
C. Segui, E. Cesari, Effect of Mn on ageing of Cu-AI-Ni-Mn-B alloys, J. de Physique IV Colloque 5 (1995) C2-187- C2191.
DOI: 10.1051/jp4:1995229
Google Scholar
[15]
S.N.S. Al-Humairi, Cu-based shape memory alloys: modified structures and their related properties, book chapter in: Recent Advances in Engineering Materials and Metallurgy. Intech Open, 2019.
DOI: 10.5772/intechopen.86193
Google Scholar
[16]
C.A. Canbay, N. Unlu, I. Ozkul, T. Polata, M. Sekerci, K. Aldas, Investigation of Fe content in Cu-Al-Ni shape memory alloys, J. Phys. Metals Metallogr. 119 (2018) 536-541.
DOI: 10.1134/s0031918x18060030
Google Scholar
[17]
E.M. Mazzer, C.S. Kiminami, C. Bolfarini, R.D. Cava, W.J. Botta, P. Gargarella, F. Audebert, M. Galano, Phase transformation and shape memory effect of a Cu-Al-Ni-Mn-Nb high temperature shape memory alloy, J. Mater. Sci. Eng.: A. 663 (2016) 64-68.
DOI: 10.1016/j.msea.2016.03.017
Google Scholar
[18]
Z. Stošić, D. Manasijević, L. Balanović, T. Holjevac-Grgurić, U. Stamenković, M. Premović, D. Minić, M. Gorgievski, R. Todorović, Effects of composition and thermal treatment of Cu-Al-Zn alloys with low content of Al on their shape-memory properties, J. Mater. Res. 20 (2017) 1425-1431.
DOI: 10.1590/1980-5373-mr-2017-0153
Google Scholar
[19]
N.M. Dawood, A.K. Abidali, A.A. Atiyah, Fabrication of porous NiTi shape memory alloy objects by powder metallurgy for biomedical applications, IOP Conf. Ser.: Mater. Sci. Eng. 518 (2019) 032056.
DOI: 10.1088/1757-899x/518/3/032056
Google Scholar
[20]
R. Dasgupta, A look into Cu-based shape memory alloys: present scenario and future propose, J. Mater. Res. 29 (2014) 1681-1698.
DOI: 10.1557/jmr.2014.189
Google Scholar
[21]
M.Benke, V.Mertinger, E.Nagy, Jan Van Humbeeck, Investigation of Ageing Phenomena in CuAlNi Based Shape Memory Alloys, Materials Science Forum Vols 537-538 (2007) pp.129-136.
DOI: 10.4028/www.scientific.net/msf.537-538.129
Google Scholar
[22]
J.R. Davis, ASM Specialty Handbook: Copper and copper alloys, ASM International, Ohio, (2001).
Google Scholar
[23]
S.N. Saud, E. Hamzah, T. Abubakar, H. Bakhsheshi-Rad, Microstructure and corrosion behavior of Cu-Al-Ni shape memory alloys with Ag nano particles, Materials and Corrosion 66 (2014) 527-534.
DOI: 10.1002/maco.201407658
Google Scholar
[24]
Annual Book of ASTM standards, Wear and erosion, Metal corrosion, American Society for Testing and Materials, Vol. 03. 02, G5 -87, (1988).
Google Scholar
[25]
Y. Aydogdu, A. Aydogdu, O. Adiguzel, Self-accommodating martensite plate variants in shape memory CuAlNi alloys, J. Mater. Proces. Techno. 123 (2002) 498-500.
DOI: 10.1016/s0924-0136(02)00140-1
Google Scholar
[26]
S. Montecinos and S. Simison, Corrosion behavior of Cu- Al-Be shape memory alloys with different compositions and microstructures, Corrosion Science 74 (2013) 387-395.
DOI: 10.1016/j.corsci.2013.05.012
Google Scholar
[27]
Booth-Morrison C., Noebe R., Seidman D.N., Effects of a tantalum addition on the morphological and compositional evolution of a model Ni-Al-Cr superalloy. Proceedings of the International Symposium on Superalloys. 2008, 73-79.
DOI: 10.7449/2008/superalloys_2008_73_79
Google Scholar
[28]
V. Sampath, Studies on the effect of grain refinement and thermal processing on shape memory characteristics of Cu-Al-Ni alloys, Smart Mater. Struct. 14 (2005) S253-S260.
DOI: 10.1088/0964-1726/14/5/013
Google Scholar
[29]
F.C. Lovey, E. Cesari, On the microstructural characteristics of non-equilibrium 𝛾 precipitates in Cu-Zn-Al alloys, J. Mate. Sci. Eng. A. 129 (1990) 127-133.
DOI: 10.1016/0921-5093(90)90351-3
Google Scholar
[30]
B. Chen, C. Liang, D. Fu, D. Ren, Corrosion behavior of Cu and the Cu-Zn-Al shape memory alloy in simulated uterine fluid, Contraception 72 (2005) 221-224.
DOI: 10.1016/j.contraception.2005.04.006
Google Scholar
[31]
A.A. Atiyah, A.K. Abidali, N.M. Dawood, Characterization of NiTi and NiTiCu porous shape memory alloys prepared by powder metallurgy (Part I), Arab J. Sci. Eng. 40 (2015) 901-913.
DOI: 10.1007/s13369-014-1538-0
Google Scholar
[32]
A.W. Rajih, N.M. Dawood, F.S. Rasheed, Corrosion protection of 316L stainless steel by HA coating via pulsed laser deposition technique, J. Eng. Appl. Sci. 13 (2018) 10221-10231.
Google Scholar