[1]
S. R. Doagou, L. J. Mishnaevsky , J. I. Bech, Leading edge erosion of wind turbine blades: Multiaxial critical plane fatigue model of coating degradation under random liquid impacts, John Wiley & Sons, 2020;1–15.
DOI: 10.1002/we.2515
Google Scholar
[2]
N. E. AbdalLatefe, M. A. Ahmed, S. Mohamed, Study the effect of erosion-corrosion of al-mg-si alloy in marine environment", Engineering and Technology J., 31(2013)2.
Google Scholar
[3]
A. Alhussein , J. Capelle , J. Gilgert , A. Tidu , S. Hariri, Z. Azari, Static, dynamic and fatigue characteristics of the pipeline API 5L X52 steel after sandblasting, Elsevier, Engineering Failure Analysis 27 (2013)1-15.
DOI: 10.1016/j.engfailanal.2012.06.011
Google Scholar
[4]
V. Bharath, M. Nagaral, V. Auradian , Preparation of 6061Al-Al2O3 MMC's by stir casting and evaluation of mechanical and wear properties, Procedia Materials Sci. 6(2014) 1658-1667.
DOI: 10.1016/j.mspro.2014.07.151
Google Scholar
[5]
S. Rajesh, A. G. Krishna, P. R. MurtyRaju, Duraiselvam statistical analysis of dry sliding wear behavior of graphite reinforced (Al- Mg-Cu), Procedia Materials Sci. 6(2014)1110-1120.
DOI: 10.1016/j.mspro.2014.07.183
Google Scholar
[6]
M. K. Aravindan1 and K. Balamurugan, Comparative wear behavior of Al6063 with sic and nano sic metal matrix composites ", ARPN J. of Engineering and Applied Sci., 11(2016) 9.
Google Scholar
[7]
A. Karthikeyan, S. Nallusamy, Experimental analysis on sliding wear behavior of aluminium-6063 with sic particulate composites", International J. of Engineering Research in Africa, 31(2017) 36-43.
DOI: 10.4028/www.scientific.net/jera.31.36
Google Scholar
[8]
Q. V. Viet, Y. Beygelzimer, R. Kulagin, L. S. Toth, Mechanical odelling of the plastic flow machining process,J. Materials , 11(2018)1218.
DOI: 10.3390/ma11071218
Google Scholar
[9]
V. Mircea , A. Pertuz-Comas, V. A. Şerban, Correlation between mass loss on the cavitation erosion and the fatigue stress level for a martensitic stainless steel, Revista UIS Ingenierías, 18(2019) 11-20.
DOI: 10.18273/revuin.v18n1-2019001
Google Scholar
[10]
A. D. Assi, M. N. Abdulridah, H. J. Al-Alkawi, Influence of cryogenic temperature (CT) on tensile properties and fatigue behavior of 2024-Al2O3 nanocomposites, Materials Sci. and Engineering J.,765(2020) 012052.
DOI: 10.1088/1757-899x/765/1/012052
Google Scholar
[11]
International alloy designation and chemical composition limit for wrought aluminum and wrought aluminum, registration recorded series and according to the ISO system called (ISO209-1), 2017, p.3.
Google Scholar
[12]
MatWeb.com, Material Property Data, (2019).
Google Scholar
[13]
H. J. AlalKawi, S. Nazhat , H. H. Juhi, A cumulative damage model for fatigue life prediction based on dynamic and static deflections, Engineering And Technology J., 33(2015)4.
DOI: 10.30684/etj.33.4a.1
Google Scholar
[14]
H. J. AlalKawi, S. T. Omar & S. N. Al-Azzawi, Estimation of fatigue life components by proposed mathematical model, Engineering and Technology J., 28(2010)19.
Google Scholar