[1]
Dubiela B, Kalemba-Reca I, Kruka A, et al. Influence of high temperature annealing on morphological and compositional changes of phases in Ni-base single crystal superalloy. Materials & Design. 2017, 131: 266-276.
DOI: 10.1016/j.matchar.2017.07.021
Google Scholar
[2]
Wen Z X, Zhang DX, Li S W, et al. Anisotropic creep damage and fracture mechanism of nickel-base single crystal superalloy under multiaxial stress[J]. Journal of Alloys & Compounds, 2017, 692:301-312.
DOI: 10.1016/j.jallcom.2016.09.052
Google Scholar
[3]
Z. Wen, D. Zhang, S. Li, et al. Anisotropic creep damage and fracture mechanism of nickel-base single crystal superalloy under multi axial stress. Journal of Alloys & Compounds, 2017, 692:301-312.
DOI: 10.1016/j.jallcom.2016.09.052
Google Scholar
[4]
Roncery L M, Lopez-Galilea I, RuttertB, et al. Influence of temperature, pressure, and cooling rate during hot isostatic pressing on the microstructure of an SX Ni-base superalloy. Materials & Design, 2016, 97(3): 544-552.
DOI: 10.1016/j.matdes.2016.02.051
Google Scholar
[5]
Caccuri V, Cormier J, Desmorat R. γ'-Rafting mechanisms under complex mechanical stress state in Ni-based single crystalline superalloys. Materials & Design, 2017, 131:487-497.
DOI: 10.1016/j.matdes.2017.06.018
Google Scholar
[6]
Nowotnik A, Kubiak K, Sieniawski J, et al. Development of Nickel Based Superalloys for Advanced Turbine Engines. Materials Science Forum, 2014, 783-786:2491-2496.
DOI: 10.4028/www.scientific.net/msf.783-786.2491
Google Scholar
[7]
Stevens R A, Flewitt P E J. The effects of γ' precipitate coarsening during isothermal aging and creep of the nickel-base superalloy IN-738. Materials Science and Engineering, 1979, 37(3):237-247.
DOI: 10.1016/0025-5416(79)90157-5
Google Scholar
[8]
Rae C M F, Reed R C. The precipitation of topologically close-packed phases in rhenium-containing superalloys. Acta Materialia, 2001, 49(19):4113-4125.
DOI: 10.1016/s1359-6454(01)00265-8
Google Scholar
[9]
Whittenberger J D. Effect of Long-Term 1093 K Exposure to Air or Vacuum on the Structure of Several Wrought Superalloys. Journal of Materials Engineering and Performance, 1993, 2(5):745-758.
DOI: 10.1007/bf02650066
Google Scholar
[10]
Sha W. Quantification of age hardening in maraging steels and an Ni-base superalloy[J]. Scripta Materialia, 2000, 42(6):549-553.
DOI: 10.1016/s1359-6462(99)00394-2
Google Scholar
[11]
Su X, Xu Q, Wang R, et al. Microstructural evolution and compositional homogenization of a low Re-bearing Ni-based single crystal superalloy during through progression of heat treatment. Materials & Design, 2018, 141:296-322.
DOI: 10.1016/j.matdes.2017.12.020
Google Scholar
[12]
Chen Q Z, Jones N, Knowles D M. The microstructures of base/modified RR2072 SX superalloys and their effects on creep properties at elevated temperatures. Acta Materialia, 2002, 50(5):1095-1112.
DOI: 10.1016/s1359-6454(01)00410-4
Google Scholar