Effects of Oxide Inclusions on Texture of 1235 Al-Alloy after Deformation

Article Preview

Abstract:

Texture characteristics of compressed 1235 Al-alloy treated by different purification methods are studied by electron backscattered diffraction. The effects of oxide inclusions on texture components of material are studied as well. The main textures in hot-compressed 1235 Al-alloy are Cube texture, R texture, Gross texture, Brass texture, and Rotated cube texture. The lower the content of oxide inclusions in the material, the smaller the total relative ratio of textures. The total relative ratio of textures goes to the smallest by 1.8 % in high-efficient purified 1235 Al-alloy by oxide inclusion content of 0.051 %. The purification results have obvious effects on types and percentage of texture in the deformed alloy. With the decreasing content of oxide inclusion, the ratio of deformation texture decreases and recrystallization texture increases. Brass texture is gradually replaced by Goss texture in the deformation textures. R texture is the main texture in recrystallization textures. Therefore, reducing the content of oxide inclusions is effective for improving the hot deformation properties of 1235 Al-alloy.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1023)

Pages:

53-59

Citation:

Online since:

March 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Linne, A. Venkataraman, M. Sangid and S. Daly: Exp. Mech. Vol. 59 (2019), p.643.

Google Scholar

[2] M.M. Moradi, H.J. Aval, R. Jamaati, S. Amirkhanlou and S. Ji: J. Manu. Process Vol. 32 (2018), p.1.

Google Scholar

[3] [3] L. Deng, P. Zhou, X. Wang, J. Jin and T. Zhao: Meta. Mater. Int. Vol. 24 (2018), p.112.

Google Scholar

[4] A. A. Tiamiyu, A. Y. Badmos, A. G. Odeshi and J. A. Szpunar: Mater. Sci. Eng. A Vol. 10 (2017), p.492.

Google Scholar

[5] T. Dursun and C. Soutis: Mater. Design Vol. 56 (2014), p.862.

Google Scholar

[6] G. Tan, Y. Yue and R. Cao: Heat Treat. Met. Vol. 7 (2016), p.104.

Google Scholar

[7] G. Chen, G. Fu, H. Chen and W. Yan: Met. Mater. Int. Vol. 18 (2012), p.129.

Google Scholar

[8] W. Yan, G. Fu, H. Chen and G. Chen: J. Mater. Eng. Perform. Vol. 21 (2012), p.2203.

Google Scholar

[9] M. Kuroda, M. Kamaya, T. Yamada and K. Akita: Jap. Sci. Mech. Eng. Vol. 852 (2017), p.12.

Google Scholar

[10] C. Cayron, B. Artaud and L. Briottet: Mater. Charact. Vol. 57 (2006), p.386.

Google Scholar

[11] P. Nowakowski, J. Wiezorek, V. Bathula and S. Mielo: Microsc. Microanal. Vol. 24 (2018), p.2182.

Google Scholar

[12] M. Salehi, N. Anjabin and H. Kim: Microsc. Microanal. Vol. 25 (2019), p.1.

Google Scholar

[13] O. Mishin, A. Godfrey, J. Jensen and N. Hansen: Acta Mater. Vol. 61(2013), p.5354.

Google Scholar

[14] T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura and J. Joans: Prog. Mater. Sci. Vol. 60 (2014), p.130.

Google Scholar

[15] X. Fan, D. Tang, F. Fang and D. Li: J. Plast. Eng. Vol. 22 (2015), p.51.

Google Scholar

[16] W. Yin, W. Wang, X. Fang, C. Qin and X. Xing: Mater. Charact. Vol. 107 (2015), p.134.

Google Scholar

[17] L. Zhang, Y. Wang, S. Ni, G. Chen, L. Kai, D. Yong and M. Song: J. Mater. Eng. Vol. 27 (2018), p.1130.

Google Scholar

[18] F. Goli and R. Jamaati: Mater. Lett. Vol. 219 (2018), p.229.

Google Scholar