Effect of Solvents Ratio and Polymer Concentration on Electrospun Polybenzimidazole Nanofiber Membranes Fabrication

Article Preview

Abstract:

Polybenzimidazole (PBI) nanofiber membranes were prepared using electrospinning potential of 15 kV and 0.2 ml/h flow rate at different PBI concentrations (6.5 and 7.5 w/v%) with the solvent mixture ratio (DMAc:DMF) of 1:1 and 2:1, respectively. This study investigated the properties of the polymeric solution and the effects of solvent ratio and concentration on morphology, hydrophobicity and mechanical properties of PBI nanofiber membranes. The solvent mixture ratio and spinning solution properties are not significantly different than the effect of polymer concentration on the viscosity. The viscosity and surface tension of spinning solutions increases with an increase in the concentration of PBI. It was observed that the average diameter of nanofibers was 75 and 97 nm for 6.5 and 7.5 w/v% PBI spinning solution, respectively. Moreover, the contact angle values range from 111 to 125°. This observation reflects that the nanofiber membranes are hydrophobic. Another finding is that the nanofiber membranes with 7.5 w/v% of PBI showed excellent mechanical properties with the maximum stress value of 4.20 ± 0.29 MPa. The finding also shows that the polymer concentration on the spinning solution influences the structure and morphology of the nanofibers. On the other hand, the solvent mixture ratio does not have any significant impact on the nanofiber membranes properties.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1025)

Pages:

299-304

Citation:

Online since:

March 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Jahangiri, I. Aravi, L. Şanlı, Y. Menceloglu, and E. Ozden-Yenigun, Fabrication and optimization of proton conductive polybenzimidazole electrospun nanofiber membranes, Polymers for Advanced Technologies 29 (2017) 594-602.

DOI: 10.1002/pat.4169

Google Scholar

[2] R. Kunwar, M. Harilal, S. Krishnan, B. Pal, I.I. Misnon, C.R. Mariappan, F. Ezema, H.I. Elim, C-C. Yang, R. Jose, Pseudocapacitive Charge Storage in Thin Nanobelts, Advanced Fiber Materials 1 (2019) 205-213.

DOI: 10.1007/s42765-019-00015-w

Google Scholar

[3] R. Jose, S.G. Krishnan, B. Vidyadharan, I.I. Misnon, M. Harilal, R.A. Aziz, J. Ismail, M.M. Yusoff, Supercapacitor Electrodes Delivering High Energy and Power Densities, Materials Today: Proceedings 3 (2016) S48-56.

DOI: 10.1016/j.matpr.2016.01.007

Google Scholar

[4] R. Stoddard, and X. Chen, Electrospinning of ultra-thin nanofibers achieved through comprehensive statistical study, Materials Research Express (2016) 055022.

DOI: 10.1088/2053-1591/3/5/055022

Google Scholar

[5] S. Gee, B. Johnson, and A.L. Smith, Optimizing electrospinning parameters for piezoelectric PVDF nanofiber membranes, Journal of Membrane Science 563 (2018) 804-812.

DOI: 10.1016/j.memsci.2018.06.050

Google Scholar

[6] S. Anandhan, K. Ponprapakaran, T. Senthil, and G. George, Parametric study of Manufacturing Ultrafine Polybenzimidazole Fibers by Electrospinning, International Journal of Plastics Technology 16 (2012) 101-116.

DOI: 10.1007/s12588-012-9036-2

Google Scholar

[7] S.-Y. Kim, S. Kim, and M. J. Park, Enhanced proton transport in nanostructured polymer electrolyte/ionic liquid membranes under water-free conditions, Nature communications 1 (2010) 88.

DOI: 10.1038/ncomms1086

Google Scholar

[8] H. Penchev, F. Ublekov, D. Budurova, and V. Sinigersky, Novel Electrospun Polybenzimidazole Fibers and Yarns from Ethanol/Potassium Hydroxide Solution, Materials Letters 187 (2017) 89-93.

DOI: 10.1016/j.matlet.2016.10.063

Google Scholar

[9] M. Forouharshad, O. Saligheh, R. Arasteh, and R. Farsani, Manufacture and Characterization of Poly (butylene terephthalate) Nanofibers by Electrospinning, Journal of Macromolecular Science, Part B: Physics 49 (2010) 833-842.

DOI: 10.1080/00222341003609377

Google Scholar

[10] D. G. Yu, C. Branford-White, K. White, N. P. Chatterton, L. M. Zhu, L. Y. Huang, and B. Wang, A modified coaxial electrospinning for preparing fibers from a high concentration polymer solution, Express Polymer Letters 5 (2011) 732-741.

DOI: 10.3144/expresspolymlett.2011.71

Google Scholar

[11] F. Hakkak, and M. Rafizadeh, Optimization of Electrospun Polyacrylonitrile/Poly(Vinylidene Fluoride) Nanofiber Diameter Using the Response Surface Method, Journal of Macromolecular Science, Part B: Physics 52 (2013) 1250–1264.

DOI: 10.1080/00222348.2013.763569

Google Scholar

[12] Y. Xu, L. Zou, H. Lu, and T. Kang, Effect of different solvent systems on PHBV/PEO electrospun fibers, RSC Adv. 7 (2017) 4000-4010.

DOI: 10.1039/c6ra26783a

Google Scholar

[13] E. Kiliç, A. Yakar, and N. Pekel Bayramgil, Preparation of electrospun polyurethane nanofiber mats for the release of doxorubicine, Journal of Materials Science: Materials in Medicine 29 (2018).

DOI: 10.1007/s10856-017-6013-5

Google Scholar

[14] P. Szewczyk, D. Ura, S. Metwally, J. Knapczyk-Korczak, M. Gajek, M., Marzec, A. Bernasik, and U. Stachewicz, Roughness and Fiber Fraction Dominated Wetting of Electrospun Fiber-Based Porous Meshes, Polymers 11 (2018) 34.

DOI: 10.3390/polym11010034

Google Scholar