[1]
J. Tang, J. Wang, J. Teng, et al. Effect of Zn content on the dynamic softening of Al–Zn–Mg–Cu alloys during hot compression deformation, Vacuum, 2021, 184: 109941.
DOI: 10.1016/j.vacuum.2020.109941
Google Scholar
[2]
T. Dursun, C. Soutis. Recent developments in advanced aircraft aluminium alloys, Mater. Des. 2014, 56(4): 862-871.
DOI: 10.1016/j.matdes.2013.12.002
Google Scholar
[3]
Y. Pan, D. Zhang, H. Liu, et al. Precipitation hardening and intergranular corrosion behavior of novel Al–Mg–Zn(-Cu) alloys, J. Alloy Compd, 2021, 853: 157199.
DOI: 10.1016/j.jallcom.2020.157199
Google Scholar
[4]
A. Azarniya, A.K. Taheri, K.K. Taheri. Recent advances in ageing of 7xxx series aluminum alloys: a physical metallurgy perspective, J. Alloy Compd, 2018, 781: 945-983.
DOI: 10.1016/j.jallcom.2018.11.286
Google Scholar
[5]
J.T. Liu, Y.A. Zhang, X.W. Li, et al. Thermodynamic calculation of high zinc-containing Al-Zn-Mg-Cu alloy, Trans. Nonferrous Metals Soc. 2014, 24(5): 1481-1487.
DOI: 10.1016/s1003-6326(14)63216-7
Google Scholar
[6]
K. Wen, Y. Fan, G. Wang, et al. Aging behavior and fatigue crack growth of high Zn-containing Al-Zn-Mg-Cu alloys with zinc variation, Prog. Nat. Sci. 2017, 27(2): 217-227.
DOI: 10.1016/j.pnsc.2017.02.002
Google Scholar
[7]
M. Dixit, R. S. Mishra, K. K. Sankaran. Structure–property correlations in Al 7050 and Al 7055 high-strength aluminum alloys, Mater. Sci. Eng. A. 2008, 478: 163-172.
DOI: 10.1016/j.msea.2007.05.116
Google Scholar
[8]
S. Bai, Z. Liu, Y. Gu, et al. Microstructures and fatigue fracture behavior of an Al–Cu–Mg–Ag alloy with a low Cu/Mg ratio, Mater. Sci. Eng. A. 2011, 530: 473-480.
DOI: 10.1016/j.msea.2011.10.004
Google Scholar
[9]
M. Nakai, T. Eto. New aspect of development of high strength aluminum alloys for aerospace applications, Mater. Sci. Eng. A. 2000, 285: 62-68.
DOI: 10.1016/s0921-5093(00)00667-5
Google Scholar
[10]
W. Wen, P. Cai, A. H.W. Ngan, et al. An experimental methodology to quantify the resistance of grain boundaries to fatigue crack growth in an AA2024 T351 Al-Cu Alloy, Mater. Sci. Eng. A. 2016, 666: 288-296.
DOI: 10.1016/j.msea.2016.04.071
Google Scholar
[11]
L. Lin, Z. Liu, X. Han, et al. Effect of Overaging on Fatigue Crack Propagation and Stress Corrosion Cracking Behaviors of an Al-Zn-Mg-Cu Alloy Thick Plate, J. Mater. Eng. Perform. 2018, 27: 3824-3830.
DOI: 10.1007/s11665-018-3518-0
Google Scholar
[12]
Y.L. Wang, Q.L. Pan, L.L. Wei, et al. Effect of retrogression and reaging treatment on the microstructure and fatigue crack growth behavior of 7050 aluminum alloy thick plate, Mater. Des. 2014, 55: 857-863.
DOI: 10.1016/j.matdes.2013.09.063
Google Scholar
[13]
J.C. Li, K.G. Wang. Influence of phase coarsening on fatigue crack growth in precipitate strengthened alloys, Eng. Fract. Mech. 2019, 205: 229-252.
DOI: 10.1016/j.engfracmech.2018.11.029
Google Scholar
[14]
P. Xia, Z. Liu, S. Bai, et al. Enhanced fatigue crack propagation resistance in a superhigh strength Al–Zn–Mg–Cu alloy by modifying RRA treatment, Mater. Charact. 2016, 118: 438-445.
DOI: 10.1016/j.matchar.2016.06.023
Google Scholar
[15]
R. Yang, Z. Liu, P. Ying, et al. Multistage-aging process effect on formation of GP zones and mechanical properties in Al–Zn–Mg–Cu alloy, T. Nonferr. Metal. Soc. 2016, 26: 1183-1190.
DOI: 10.1016/s1003-6326(16)64221-8
Google Scholar
[16]
R. Li, Z. Ren, Y. Wu, et al. Mechanical behaviors and precipitation transformation of the lightweight high-Zn-content Al–Zn–Li–Mg–Cu alloy, Mater. Sci. Eng. A. 2021, 802: 140637.
DOI: 10.1016/j.msea.2020.140637
Google Scholar
[17]
K. Wen, B. Xiong, Y. Zhang, et al. Over-aging influenced matrix precipitate characteristics improve fatigue crack propagation in a high Zn-containing Al-Zn-Mg-Cu alloy, Mater. Sci. Eng. A. 2018, 716: 42-54.
DOI: 10.1016/j.msea.2018.01.040
Google Scholar
[18]
K. Wen, B. Xiong, Y. Zhang, et al. Effect of Various Retrogression Regimes on Aging Behavior and Precipitates Characterization of a High Zn‑Containing Al–Zn–Mg–Cu Alloy, Met. Mater. Int. 2018, 24: 537-548.
DOI: 10.1007/s12540-018-0077-8
Google Scholar
[19]
K. Wen, B. Xiong, W. Ren, et al. Fe-rich particles influenced secondary crack characteristics in an Al-Zn-Mg-Cu alloy extrusion plate with high zinc content, Scripta Mater. 2020, 186: 259-262.
DOI: 10.1016/j.scriptamat.2020.05.045
Google Scholar
[20]
K. Wen, B. Xiong, Y. Zhang, et al. Single-stage aging behaviour and precipitate evolution in a high Zn-containing Al–9.78Zn–2.02Mg–1.76Cu alloy, Mater. Sci. Tech-Lond. 2018, 34(6): 718-724.
DOI: 10.1080/02670836.2017.1410951
Google Scholar
[21]
J.D. Verhoeven, Fundamentals of Physical Metallurgy, John Wiley, New York, (1975).
Google Scholar