[1]
Qinyang Zhao,Fei Yang,Rob Torrens,Leandro Bolzoni. In-situ observation of the tensile deformation and fracture behaviour of powder-consolidated and as-cast metastable beta titanium alloys[J]. Materials Science & Engineering A,2019,750.
DOI: 10.1016/j.msea.2019.02.037
Google Scholar
[2]
A S S S , B H S , C A H G . A Review on alloy design, biological response, and strengthening of β-Titanium Alloys as biomaterials[J]. Materials ence and Engineering: C, (2020).
Google Scholar
[3]
Premkumar Manda,Shri Bhagwan Pathak,R. Sri Rama Devi,A. K. Singh. Development of Microstructure and Texture of β Solution-Treated and Aged Metastable Beta Titanium Alloy Ti-5Al-3.5Mo-7.2V-3Cr[J]. Metallography, Microstructure, and Analysis,2019,8(4).
DOI: 10.1007/s13632-019-00554-z
Google Scholar
[4]
S.A. Mantri,D. Choudhuri,A. Behera,M. Hendrickson,T. Alam,R. Banerjee. Role of isothermal omega phase precipitation on the mechanical behavior of a Ti-Mo-Al-Nb alloy[J]. Materials Science & Engineering A,2019,767.
DOI: 10.1016/j.msea.2019.138397
Google Scholar
[5]
S. L. Semiatin. An Overview of the Thermomechanical Processing of α/β Titanium Alloys: Current Status and Future Research Opportunities[J]. Metallurgical and Materials Transactions A,2020,51(2).
DOI: 10.1007/s11661-020-05625-3
Google Scholar
[6]
Kaouka A, Benarous K . Characterization and Properties of Boriding Titanium Alloy Ti6Al4V[J]. Acta Physica Polonica A, 2020, 137(4):493-495.
DOI: 10.12693/aphyspola.137.493
Google Scholar
[7]
Gao Junheng,Rainforth W Mark. The Effect of Heating Rate on Discontinuous Grain Boundary Alpha Formation in a Metastable Beta Titanium Alloy[J]. Metallurgical and Materials Transactions,2020,51(8).
DOI: 10.1007/s11661-020-05856-4
Google Scholar
[8]
S. Sadeghpour, S.M. Abbasi,M. Morakabati,S. Bruschi. Correlation between alpha phase morphology and tensile properties of a new beta titanium alloy[J]. Materials & Design,2017,121.
DOI: 10.1016/j.matdes.2017.02.043
Google Scholar
[9]
Cao Sheng,Zhou Xigen,Lim Chao Voon Samuel,Boyer Rodney R.,Williams James C.,Wu Xinhua. A strong and ductile Ti-3Al-8V-6Cr-4Mo-4Zr (Beta-C) alloy achieved by introducing trace carbon addition and cold work[J]. Scripta Materialia,2020,178(C).
DOI: 10.1016/j.scriptamat.2019.11.021
Google Scholar
[10]
Ping-Jui Yu,Yuan-Yi Hsu,Shing-Hoa Wang,Jer-Ren Yang,Yo-Lun Yang,Horng-Yi Chang,Chih-Yuan Chen,Hsueh-Ren Chen. Comparison of dynamic-aging creep and pre-aged creep in Ti-15-3 beta titanium alloy[J]. Materials Science & Engineering A,2020,798.
DOI: 10.1016/j.msea.2020.140135
Google Scholar
[11]
B S S A, A S M A , A M M , et al. A new multi-element beta titanium alloy with a high yield strength exhibiting transformation and twinning induced plasticity effects[J]. Scripta Materialia, 2018, 145:104-108.
DOI: 10.1016/j.scriptamat.2017.10.017
Google Scholar
[12]
B. Jiang, S. Emura, K. Tsuchiya, Microstructural evolution and its effect on the mechanical behavior of Ti–5Al–5Mo–5V–3Cr alloy during aging. Mater. Sci. Eng. A 731, 239–248 (2018).
DOI: 10.1016/j.msea.2018.06.064
Google Scholar
[13]
J. Fan, H. Kou, Y. Zang, L. Germain, H. Ke, C. Esling, J. Li, Formation of slip bands and microstructure evolution of Ti–5Al–5Mo–5V–3Cr–0.5Fe alloy during warm deformation. J. Alloys Compd. 770, 183–193 (2019).
DOI: 10.1016/j.jallcom.2018.08.097
Google Scholar
[14]
S, Sadeghpour, S. M , et al. Deformation-induced martensitic transformation in a new metastable β titanium alloy[J]. Journal of Alloys & Compounds, (2015).
DOI: 10.1016/j.jallcom.2015.07.263
Google Scholar
[15]
Vajpai S K , Sharma B , Ota M , et al. Effect of Cold Rolling and Heat-treatment on the Microstructure and Mechanical Properties of β-Titanium Ti-25Nb-25Zr Alloy[J]. Materials Science and Engineering A, 2018, 736(OCT.24):323-328.
DOI: 10.1016/j.msea.2018.09.002
Google Scholar