Yield Enhancement of Activated Carbon Palm Kernel Shells Based through Carbonization Solidification Process

Article Preview

Abstract:

Utilization of palm oil waste in palm kernel shells as activated carbon, the activated carbon manufacturing goes through several processes, including dehydration, carbonization, and activation. Palm shell particle size was controlled during the activated carbon synthesis process through the temperature of the milling time and carbonization processes. The carbonization process was carried out using an electric furnace at carbonization temperatures 400, 600, and 800 °C, respectively. A carbonization time was 1 hour under vacuum condition to produce initial values of particle and grain sizes that had a neat structure and had absorption capacity. The particle size of formed activated carbon was measured by PSA (particle size analyzer) type Coulter LS 100Q micron scale. The particle size of active carbon was dependent on the carbonization temperature at 400, 600, and 800 °C was obtained particle size 19,90, 9,507, and 6,264 μm, respectively. Several characterizations are required to determine the properties of activated carbon was obtained. FTIR Spectrophotometer was used to observe activated carbon’s molecule structure before and after dehydration and carbonization process. It was found that the specific fingerprint at 2913,91 cm-1 and 2923,56 cm-1 for the carbon chain of activated carbon. Other physical and chemical properties were conducted to investigate moisture content, thermal property, yield enhancement, and formed product appearance.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1028)

Pages:

313-318

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Masykur, Pengembangan industri kelapa sawit sebagai penghasil energi bahan alternatif dan mengurangi pemanasan global. Jurnal Reformasi, 3, (2013) 96–107.

Google Scholar

[2] T. Wahyono, Ekonomi industri kelapa sawit di indonesia serta kaitannya dengan program penelitian dan pengembangan, 15(1) (2017) 85–100.

DOI: 10.22146/jae.18173

Google Scholar

[3] Z. Abidin, H.P. Limbong, Pemanfaatan serbuk arang cangkang kelapa sawit sebagai substitusi carbon black untuk bahan pengisi kompon karet, Jurnal Riset Teknologi Industri. 11(1) (2017) 66–75.

DOI: 10.26578/jrti.v11i1.2167

Google Scholar

[4] A. Priatni, Rusdiansyah, Sitorus, Efektifitas karbon aktif dari palm kernel cake sebagai adsorben ion logam Mn, Fe, dan Pb pada air limbah aas terkonsentrat, (2018) 250–264.

DOI: 10.20543/mkkp.v36i1.6098

Google Scholar

[5] E. Kurniati, Pemanfaatan cangkang kelapa sawit sebagai arang aktif, Jurnal Penelitian Ilmu Teknik. 8(2) (2008) 96–103.

DOI: 10.24961/j.tek.ind.pert.2020.30.2.198

Google Scholar

[6] E.C. Okoroigwe, C.M. Saffron, P.D. Kamdem, Characterization of palm kernel shell for materials reinforcement and water treatment, 5(May) (2014) 1–6.

Google Scholar

[7] Joseph, O. O., & Omoniyi, O, Lekan Makanju Olanitori & Ebenezer Omoniyi Olukanni. Investigation of palm kernel shells as partial replacement for aggregate in asphaltic concrete. Malaysian Journal of Civil Engineering. 27(2) (2015) 223-234.

Google Scholar

[8] Ndoke, P. N, Performance of palm kernel shells as a partial replacement for coarse aggregate in asphalt concrete. Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue, (9) (2014) 145–152.

Google Scholar

[9] Mbada, N. I., Atanda, P. O., Aponbiede, O., Abioye, A. A., Ugbaja, M. I., & Alabi, A. S, Performance evaluation of suitability of carbonized palm kernel shell (PKS) as a veritable alternative to coal and charcoal in solid fuel fired furnaces, International Journal of Metallurgical Engineering, 2016(1), 15–20.

Google Scholar

[10] E. Sulistyani, E. Budi, F. Bakri, Pengaruh temperatur terhadap adsorbsi karbon aktif berbentuk pelet untuk aplikasi filter air, Proceeding Seminar Nasional Fisika UNJ. (2013) 67–72.

DOI: 10.21009/03.snf2020.01.fa.17

Google Scholar

[11] A. Imammuddin, S. Soeparman, A. Sonief, Pengaruh temperatur karbonisasi terhadap mikrostruktur dan pembentukan kristal pada biokarbon eceng gondok sebagai bahan dasar absorber gelombang elektromagnetik radar, Jurnal Rekayasa Mesin. 9(2) (2018) 135–141.

DOI: 10.21776/ub.jrm.2018.009.02.10

Google Scholar

[12] Silaban, Sintesis karbon aktif dari arang tempurung kelapa limbah mesin boiler sebagai bahan penyerap logam Cd, Cu dan Pb, Jurnal Dinamika Penelitian Industri. 29 (2018) 119–127.

DOI: 10.28959/jdpi.v29i2.4005

Google Scholar

[13] Onyeji, L. I, Removal of Heavy Metals from Dye Effluent Using Activated Carbon Produced From Coconut Shell. International Journal of Engineering Science and Technology, 3(12) (2011) 8238–8246.

Google Scholar

[14] T. Widayatno, T. Yuliawati, A.A. Susilo, P. Studi, T. Kimia, F. Teknik, U. Muhammadiyah, Adsorpsi logam berat (Pb) dari limbah cair dengan adsorben arang bambu aktif, 1(1) (2017) 17-23.

DOI: 10.32734/jtk.v8i2.2032

Google Scholar

[15] Setiyoningsih, Pembuatan dan Karakterisasi Arang Aktif Kulit Singkong Menggunakan Aktivator ZnCl2. Jurnal Kimia Riset. 3(1) (2018), 13–19.

DOI: 10.24843/jchem.2019.v13.i01.p15

Google Scholar

[16] H. Sakke, M. Wirawan, A. Basri, Dinamika Teknik Mesin Penggunaan Adsorben Arang Aktif Tempurung Kemiri dengan Variasi Ukuran Butir untuk Menurunkan Emisi Gas Buang Kendaraan Bermotor Berbahan Bakar Bensin, second ed., 1–7.

DOI: 10.29303/dtm.v0i0.258

Google Scholar

[17] Rambe, Z., Karakterisasi dan Identifikasi Gugus Fungsi dari Karbon Cangkang Kelapa Sawit dengan Metode Methano-pyrolysis. Jurnal Dinamika Penelitian Industri, 24(2) (2013), 78438.

DOI: 10.47199/jaf.v2i1.133

Google Scholar