[1]
A. P. R. Bautista, D. E. P. Sumalapao, and N. R. Villarante, Synthesis and Characterization of Epichlorohydrin-Crosslinked Lumbang (Aleurites Moluccana)-Derived Activated Carbon Chitosan Composite as Cr(VI) Bioadsorbent, Annu. Res. Rev. Biol. 21 (1), 38259 (2017).
DOI: 10.9734/arrb/2017/38259
Google Scholar
[2]
K. M. Doke, M. Yusufi, R. D. Joseph, and E. M. Khan, Comparative Adsorption of Crystal Violet and Congo Red onto ZnCl2 Activated Carbon, J. Dispers. Sci. Technol. 37 (11), 1671 (2016).
DOI: 10.1080/01932691.2015.1124342
Google Scholar
[3]
C. Chen, P. Zhao, Z. Li, and Z. Tong, Adsorption Behavior of Chromium(VI) on Activated Carbon from Eucalyptus Sawdust Prepared by Microwave-assisted Activation with ZnCl2, Desalin. Water Treat. 57 (27), 12572–12584 (2016).
DOI: 10.1080/19443994.2015.1049960
Google Scholar
[4]
S. S. A. Syed-Hassan and M. S. M. Zaini, Optimization of The Preparation of Activated Carbon from Palm Kernel Shell for Methane Adsorption Using Taguchi Orthogonal Array Design, Korean J. Chem. Eng. 33 (8) 2502–2512 (2016).
DOI: 10.1007/s11814-016-0072-z
Google Scholar
[5]
A. A. Arie, H. Kristianto, I. Suharto, M. Halim, and J. K. Lee, Preparation of Orange Peel Based Activated Carbons as Cathodes in Lithium Ion Capacitors, Adv. Mater. Res. 896, 95–99 (2014).
DOI: 10.4028/www.scientific.net/amr.896.95
Google Scholar
[6]
D. C. S. Azevedo, J. C. S. Araújo, M. Bastos-Neto, A. E. B. Torres, E. F. Jaguaribe, and C. L. Cavalcante, Microporous Activated Carbon Prepared from Coconut Shells using Chemical Activation with Zinc Chloride, Microporous Mesoporous Mater. 100 (1–3), 361–364 (2007).
DOI: 10.1016/j.micromeso.2006.11.024
Google Scholar
[7]
M. A. Baqiya et al., Structural Study on Graphene-Based Particles Prepared from Old ,Coconut Shell by Acid–Assisted Mechanical Exfoliation, Adv. Powder Technol. 31 (5), 2072–2078, (2020).
DOI: 10.1016/j.apt.2020.02.039
Google Scholar
[8]
K. Y. Foo and B. H. Hameed, Factors Affecting the Carbon Yield and Adsorption Capability of The Mangosteen Peel Activated Carbon Prepared by Microwave Assisted K2CO3 Activation, Chem. Eng. J. 180, 66–74 (2012).
DOI: 10.1016/j.cej.2011.11.002
Google Scholar
[9]
O. Nurhilal et al., Synthesis of High Quality Porous Carbon from Water Hyacinth, Key Eng. Mater. 860, 173 – 177, (2020).
DOI: 10.4028/www.scientific.net/kem.860.173
Google Scholar
[10]
H. Aldila, A. Indriawati, Megiyo, F. Afriani, N. Fauziah, and A. Nuryadin, Synthesis of Carbon Dielectric Composite from Candlenut Shell (Aleurites moluccana), IOP Conf. Ser. Earth Environ. Sci. 353 (1), 0–5, (2019).
DOI: 10.1088/1755-1315/353/1/012006
Google Scholar
[11]
M. Zakir, P. Budi, I. Raya, A. Karim, R. Wulandari, and A. B. J. Sobrido, Determination Of Specific Capacitance of Modified Candlenut Shell Based Carbon as Electrode Material for Supercapacitor, J. Phys. Conf. Ser. 979 (1), (2018).
DOI: 10.1088/1742-6596/979/1/012024
Google Scholar
[12]
S. Maulina and M. Iriansyah, Characteristics of Activated Carbon Resulted from Pyrolysis of the Oil Palm Fronds Powder, IOP Conf. Ser. Mater. Sci. Eng. 309 (1), (2018).
DOI: 10.1088/1757-899x/309/1/012072
Google Scholar
[13]
V. Ţucureanu, A. Matei, and A. M. Avram, FTIR Spectroscopy for Carbon Family Study, Crit. Rev. Anal. Chem. 46 (6), 502–520, (2016).
DOI: 10.1080/10408347.2016.1157013
Google Scholar
[14]
M. S. D. O. Junior, M. F. Diniz, R. D. C. L. Dutra, M. Massi, and C. Otani, Applicability of FTIR Techniques and Goniometry on Characterization of Carbon Fiber Surfaces, J. Aerosp. Technol. Manag. 8 (1), 26–32, (2016).
DOI: 10.5028/jatm.v8i1.537
Google Scholar
[15]
N. R. Villarante, R. A. E. Davila, and D. P. Sumalapao, Removal of Lead (Α) by Lumbang, Aleurites Moluccana Activated Carbon Carboxymethylcellulose Composite Crosslinked with Epichlorohydrin, Orient. J. Chem. 34 (2), 693–703, (2018).
DOI: 10.13005/ojc/340211
Google Scholar
[16]
M. Doloksaribu, B. Prihandoko, and K. Triyana, Preparation and Characterization of Activated Carbon Based on Coconut Shell for Supercapacitor, Int. J. Sci. Basic Appl. Res. 35 (3), 430–437, (2017).
Google Scholar
[17]
T. D. T. Oyedotun, X-ray Fluorescence (XRF) in the Investigation of the Composition of Earth Materials: a Review and an Overview, Geol. Ecol. Landscapes. 2 (2), 148–154, (2018).
DOI: 10.1080/24749508.2018.1452459
Google Scholar