[1]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, 306(5696), 666-669 (2004).
DOI: 10.1126/science.1102896
Google Scholar
[2]
A. K. Geim and K. S. Novoselov, The Rise of Graphene, Nature Materials, 6, 183-191 (2007).
Google Scholar
[3]
X. Zhang, H.Zhang, C.Li, K.Wang, X.Sun and Y.Ma,Recent Advances in Porous Graphene Materials for Supercapacitor Applications, RSC Adv., 86(4), 45862-45884 (2014).
DOI: 10.1039/c4ra07869a
Google Scholar
[4]
M. D. Stoller, S. Park, Y. Zhu, J. An and R. S. Ruoff, Graphene-Based Ultracapacitors, Nano Latter, 8(10), 3498-3502 (2008).
DOI: 10.1021/nl802558y
Google Scholar
[5]
Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff, Graphene and Graphene Oxide:Synthesis, Properties and Applications, Adv.Mater, 22(35), 3906-3964 (2010).
DOI: 10.1002/adma.201001068
Google Scholar
[6]
D. R. Dreyer, R. S. Ruoff and C. W. Bielawski, From Conception to Realization: An Historial Account of Graphene and Some Perspectives for Its Future, Angew Chem Int Ed Engl, 3, 9336-9344 (2010).
DOI: 10.1002/anie.201003024
Google Scholar
[7]
C. Tan, X. Huang and H. Zhang, Synthesis and Applications of Graphene-Based Noble Metal Nanostructures, Materials today, 16(1-2), 29-36 (2013).
DOI: 10.1016/j.mattod.2013.01.021
Google Scholar
[8]
Y. Zhang, L. Guo, H. Xia, Q. Chen, J. Feng and H. Sun, Photoreduction of Graphene Oxides: Methods, Properties, and Applications, Advanced Optical Materials, 2(1), 10-28 (2013).
DOI: 10.1002/adom.201300317
Google Scholar
[9]
X. H. Taia, S. W. Chooka, C. Wei, K. M. L. T. C. K. Yang, S. Chong and J. C. Juan, Effective Photoreduction of Graphene Oxide for Photodegradation of Volatile Organic Compounds, RSC Advances, 9(31), 18076–18086 (2019).
DOI: 10.1039/c9ra01209e
Google Scholar
[10]
B. Xue, Y. Zou and Y. Yang, A UV-light Induced Photochemical Method for Graphene Oxide Reduction, Journal of Materials Science, 52(21), 12742–12750 (2017).
DOI: 10.1007/s10853-017-1266-4
Google Scholar
[11]
K. Muthoosamy, R. G. Bai, I. B. Abubakar, S. M. Sudheer, H. N. Lim, H.-S. Loh, N. M. Huang, C. H. Chia and S. Manickam, Exceedingly Biocompatible and Thin-Layered Reduced Graphene Oxide Nanosheets Using An Eco-Friendly Mushroom Extract Strategy, International Journal of Nanomedicine, 10, 1505–1519 (2015).
DOI: 10.2147/ijn.s75213
Google Scholar
[12]
S. Türk, I. Altınsoy, G. Ç. Efe, M.Ipek, M.Özacar and C.Bindal, The Effect of Reduction of Graphene Oxide on The Formation of Hydroxyapatite and Tricalcium Phosphate, Vacuum, 148, 1-10 (2018).
DOI: 10.1016/j.vacuum.2017.10.037
Google Scholar
[13]
A. Abdellah, B. Fabel, PaoloLugli and G. Scarpa, Spray Deposition of Organic Semiconducting Thin-Films: Towards The Fabrication of Arbitrary Shaped Organic Electronic Devices, Organic Electronics, 11(6), 1031-1038 (2010).
DOI: 10.1016/j.orgel.2010.02.018
Google Scholar
[14]
L. L. Notte, P. Cataldi, L. Ceseracciu, I. S. Bayer, A. Athanassiou, S. Marras, E. Villari, F. Brunetti and A. Reale, Fully-sprayed Flexible Polymer Solar Cells with A Cellulose-Graphene Electrode, Materials Today Energy, 7, 195-112 (2018).
DOI: 10.1016/j.mtener.2017.12.010
Google Scholar
[15]
V. H. Pham, T. V. Cuong, S. H. Hur, E. W. Shin, J. S. Kim, J. S. Chung and E. J. Kim, Fast and Simple Fabrication of A Large Transparent Chemically-Converted Graphene Film by Spray-Coating, Carbon, 48, 1945-1951 (2010).
DOI: 10.1016/j.carbon.2010.01.062
Google Scholar
[16]
X. Gao, J. Jang and S. Nagase, Hydrazine and Thermal Reduction of Graphene Oxide: Reaction Mechanisms, Product Structures, and Reaction Design, J. Phys. Chem. C, 114, 832-842 (2010).
DOI: 10.1021/jp909284g
Google Scholar
[17]
T. Wu, S. Liu, H. Li, L. Wang, X. Sun, Production of Reduced Graphene Oxide by UV Irradiation, Journal of Nanosaince and Nanotechnology, 11, 10078-10081 (2011).
DOI: 10.1166/jnn.2011.4987
Google Scholar