Effect of Filler Concentration and Time Sonication of ZnO Composite for Radar Absorbing Material Applications

Article Preview

Abstract:

Effects of filler concentration and sonication time on the structure, morphology, reflection loss and absorption percentage of ZnO composite was investigated. The structure, morphology, reflection loss and absorption percentage of the composite was investigated using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Vector Network Analyzer (VNA). The ZnO composite was made by solution mixing method with the epoxy resin as a filler varied of 10 wt%, 20 wt%, and 30 wt%. The hardener was mixed to the ZnO composite by the composition of 2: 1. The sonication time was varied of 30, 45 and 60 minutes. The XRD showed that the crystal structure of ZnO composite was confirmed as a hexagonal structure and the structure was not change for all composite. The VNA results showed that the optimum reflection loss value was-9.37042 dB at the frequency of 12.3 GHz for the filler composition of 20 wt% and sonification time of 45 minutes. On the other hand, the minimum reflection loss value was-6.86845 dB at the frequency of 12.3 GHz for the filler composition of 10 wt% and sonification time of 45 minutes. In addition, the optimum absorption percentage was 18 % at a filler composition of 10 wt% with 60 minutes sonication time. This study demonstrates a promising method to improve a microwave absorption of ZnO composites.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1028)

Pages:

249-254

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.J. Vinoy, R.M. Jha, Trends in radar absorbing materials technology, Sadhana. 20 (1995) 815–850. https://doi.org/10.1007/BF02744411.

DOI: 10.1007/bf02744411

Google Scholar

[2] Z. Peng, J.-Y. Hwang, M. Andriese, Y. Zhang, G. Li, T. Jiang, Microwave Power Absorption Characteristics of Iron Oxides, in: J.S. Carpenter, C. Bai, J.P. Escobedo, J.-Y. Hwang, S. Ikhmayies, B. Li, J. Li, S.N. Monteiro, Z. Peng, M. Zhang (Eds.), Characterization of Minerals, Metals, and Materials 2015, Springer International Publishing, Cham, 2016: p.299–305. https://doi.org/10.1007/978-3-319-48191-3_37.

DOI: 10.1002/9781119093404.ch37

Google Scholar

[3] D. Ginting, D. Nanto, Y.R. Denny, K. Tarigan, S. Hadi, M. Ihsan, J.-S. Rhyee, Second order magnetic phase transition and scaling analysis in iron doped manganite La0.7Ca0.3Mn1−xFexO3 compounds, Journal of Magnetism and Magnetic Materials. 395 (2015) 41–47. https://doi.org/10.1016/j.jmmm.2015.07.033.

DOI: 10.1016/j.jmmm.2015.07.033

Google Scholar

[4] P.E. Swastika, G. Antarnusa, E. Suharyadi, T. Kato, S. Iwata, Biomolecule detection using wheatstone bridge giant magnetoresistance (GMR) sensors based on CoFeB spin-valve thin film, J. Phys.: Conf. Ser. 1011 (2018) 012060. https://doi.org/10.1088/1742-6596/1011/1/012060.

DOI: 10.1088/1742-6596/1011/1/012060

Google Scholar

[5] V.K. Singh, A. Shukla, M.K. Patra, L. Saini, R.K. Jani, S.R. Vadera, N. Kumar, Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite, Carbon. 50 (2012) 2202–2208. https://doi.org/10.1016/j.carbon.2012.01.033.

DOI: 10.1016/j.carbon.2012.01.033

Google Scholar

[6] T. Xia, C. Zhang, N.A. Oyler, X. Chen, Hydrogenated TiO2 Nanocrystals: A Novel Microwave Absorbing Material, Advanced Materials. 25 (2013) 6905–6910. https://doi.org/10.1002/adma.201303088.

DOI: 10.1002/adma.201303088

Google Scholar

[7] Y.(刘颖) Liu, K.(赵坤) Zhao, M.G.B. Drew, Y.(刘跃) Liu, A theoretical and practical clarification on the calculation of reflection loss for microwave absorbing materials, AIP Advances. 8 (2018) 015223. https://doi.org/10.1063/1.4991448.

DOI: 10.1063/1.4991448

Google Scholar

[8] Y.R. Denny, K. Takahashi, K. Niki, D.S. Yang, T. Fujikawa, H.J. Kang, Ni K-edge XAFS analysis of NiO thin film with multiple scattering theory, Surface and Interface Analysis. 46 (2014) 997–999. https://doi.org/10.1002/sia.5455.

DOI: 10.1002/sia.5455

Google Scholar

[9] H.Y. Atay, Ö. İçin, Manufacturing radar-absorbing composite materials by using magnetic Co-doped zinc oxide particles synthesized by Sol-Gel, Journal of Composite Materials. 54 (2020) 4059–4066. https://doi.org/10.1177/0021998320927754.

DOI: 10.1177/0021998320927754

Google Scholar

[10] G. Antarnusa, P.E. Swastika, E. Suharyadi, Wheatstone bridge-giant magnetoresistance (GMR) sensors based on Co/Cu multilayers for bio-detection applications, J. Phys.: Conf. Ser. 1011 (2018) 012061. https://doi.org/10.1088/1742-6596/1011/1/012061.

DOI: 10.1088/1742-6596/1011/1/012061

Google Scholar

[11] M. Cai, A. Shui, X. Wang, C. He, J. Qian, B. Du, A facile fabrication and high-performance electromagnetic microwave absorption of ZnO nanoparticles, Journal of Alloys and Compounds. 842 (2020) 155638. https://doi.org/10.1016/j.jallcom.2020.155638.

DOI: 10.1016/j.jallcom.2020.155638

Google Scholar

[12] M.S. Al-Assiri, M.M. Mostafa, M.A. Ali, M.M. El-Desoky, Synthesis, structural and electrical properties of annealed ZnO thin films deposited by pulsed laser deposition (PLD), Superlattices and Microstructures. 75 (2014) 127–135. https://doi.org/10.1016/j.spmi.2014.07.043.

DOI: 10.1016/j.spmi.2014.07.043

Google Scholar

[13] Y.R. Denny, S. Seo, K. Lee, S.K. Oh, H.J. Kang, S. Heo, J.G. Chung, J.C. Lee, S. Tougaard, Effects of cation compositions on the electronic properties and optical dispersion of indium zinc tin oxide thin films by electron spectroscopy, Materials Research Bulletin. 62 (2015) 222–231. https://doi.org/10.1016/j.materresbull.2014.11.015.

DOI: 10.1016/j.materresbull.2014.11.015

Google Scholar

[14] M.-S. Cao, X.-L. Shi, X.-Y. Fang, H.-B. Jin, Z.-L. Hou, W. Zhou, Y.-J. Chen, Microwave absorption properties and mechanism of cagelike ZnO∕SiO2 nanocomposites, Applied Physics Letters. 91 (2007) 203110. https://doi.org/10.1063/1.2803764.

DOI: 10.1063/1.2803764

Google Scholar

[15] O. Padmaraj, M. Venkateswarlu, N. Satyanarayana, Effect of ZnO filler concentration on the conductivity, structure and morphology of PVdF-HFP nanocomposite solid polymer electrolyte for lithium battery application, Ionics. 19 (2013) 1835–1842. https://doi.org/10.1007/s11581-013-0922-1.

DOI: 10.1007/s11581-013-0922-1

Google Scholar

[16] O.H. Lin, H.M. Akil, S. Mahmud, Effect of Particle Morphology on the Properties of Polypropylene/Nanometric Zinc Oxide (PP/Nanozno) Composites, Advanced Composites Letters. 18 (2009) 096369350901800302. https://doi.org/10.1177/096369350901800302.

DOI: 10.1177/096369350901800302

Google Scholar