[1]
S. Chaturvedi, P.N. Dave, Solid propellants: AP/HTPB composite propellants, Arab. J. Chem 12 (2019) 2061-2068. doi.org/10.1016/j.arabjc.2014.12.033.
DOI: 10.1016/j.arabjc.2014.12.033
Google Scholar
[2]
M.W. Beckstead, K. Puduppakkam, P. Thakre, V. Yang, Modeling of combustion and ignition of solid-propellant ingredients, Prog. Energy Combust. Sci. 33 (2007) 497-551. doi.org/10.1016/j.pecs.2007.02.003.
DOI: 10.1016/j.pecs.2007.02.003
Google Scholar
[3]
N. Yadav, P.K. Srivastava, M. Varma, Recent advances in catalytic combustion of AP-based composite solid propellants, Def. Tech. xxx, (2020) xxx-xxx. In Press, Corrected Proof. doi.org/10.1016/j.dt.2020.06.007.
DOI: 10.1016/j.dt.2020.06.007
Google Scholar
[4]
K. Kishore, K. Shridhara, Solid propellant chemistry, condensed phase behavior of ammonium perchlorate based solid propellants, Defence Research Development Organization, and Ministry of Defence, New Delhi, India, (1999).
Google Scholar
[5]
K. Kishore, M.R. Sunitha, Effect of transition metal oxides on decomposition and deflagration on composite solid propellant systems: a survey. AIAA J 17 (1979) 1118-1125. doi.org/10.2514/3.61286.
DOI: 10.2514/3.61286
Google Scholar
[6]
R. Baldissera, M. Poletto, Solid propellants for rockets: a methodology to obtain high purity KNO3 from an inexpensive source, Int. J. Res. Eng. Technol. 7 (2018) 52-56. doi.org/10.15623/ijret.2018.0709007.
DOI: 10.15623/ijret.2018.0709007
Google Scholar
[7]
S.J. Mehilal, P.O. Singh, B.Bhattacharya, Evaluation of Potassium Perchlorate as a Burning Rate Modifier in Composite Propellant Formulations, Cent. Eur. J. Energetic Mater 13 (2016) 231-245. doi.org/10.22211/CEJEM/64980.
DOI: 10.22211/cejem/64980
Google Scholar
[8]
V.P. Sinditskii, V. Y. Egorshev, Combustion mechanism of ammonium-nitrate-based -propellants, J. Propuls. Power 24 (2008) 1068-1078. doi.org/10.2514/1.35233.
DOI: 10.2514/1.35233
Google Scholar
[9]
F. Maggi, L. Arosio, L. Galfetti, Catalyst screening for ammonium nitrate oxidizer, 7th European Conference for Aero Space Sciences (2017) 1-9. doi.org/10.13009/EUCASS2017-520.
Google Scholar
[10]
R. Meyer, J. Kvhler, A. Homburg, Explosives, 5th Ed., Wiley VCH, Weinheim, (2002).
Google Scholar
[11]
E.I. Izgorodina, U.L. Bernard, P.M. Dean, J.M. Pringle, D.R. MacFarlane, The Madelung constant of organic salts, Cryst. Growth Des. 9 (2009) 4834-4839. doi.org/10.1021/cg900656z.
DOI: 10.1021/cg900656z
Google Scholar
[12]
G. Vaman, The electrostatic potential of a periodic lattice, Rep. Math. Phys. 75 (2015) 135-147. doi.org/10.1016/S0034-4877(15)60029-5.
Google Scholar
[13]
D. Nguyen, P. Macchi, A. Volkov, Fast analytical evaluation of intermolecular electrostatic interaction energies using the pseudoatom representation of the electron density. III. Application to crystal structures via the Ewald and direct summation methods, Acta Cryst. A76 (2020) 630-651. doi.org/10.1107/S2053273320009584.
DOI: 10.1107/s2053273320009584
Google Scholar
[14]
Izumi, F, Structure Analysis by Powder Diffraction with the RIETAN-FP-VENUS System and External Programs —1. The RIETAN-FP-VENUS System and Integrated Assistance Environment—. Materia Japan 56 (2017) 393-396. doi.org/10.2320/materia.56.393.
DOI: 10.2320/materia.56.393
Google Scholar
[15]
Momma, K. and Izumi, F, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst., 44 (2011) 1272-1276. doi.org/10.1107/ S0021889811038970.
DOI: 10.1107/s0021889811038970
Google Scholar
[16]
R.W. Cheary, A.A. Coelho, A fundamental parameters approach to X-ray line-profile fitting, J. Appl. Cryst. 25 (1992) 109-121. doi.org/10.1107/S0021889891010804.
DOI: 10.1107/s0021889891010804
Google Scholar
[17]
R.W. Cheary, A.A. Coelho, J.P. Cline, Fundamental parameters line-profile fitting in laboratory diffractometers, J. Res. Natl.Inst. Stand. Tech. 109 (2004) 1-25. doi.org/10.6028/jres.109.002.
DOI: 10.6028/jres.109.002
Google Scholar
[18]
A. Kern, A.A. Coelho, R.W. Cheary, Diffraction Analysis of Materials: Convolution based profile fitting, Material Science, Springer, Berlin, 2004. doi.org/10.1007/978-3-662-06723-9_2.
DOI: 10.1007/978-3-662-06723-9_2
Google Scholar
[19]
A. Kern, Principle and Application of Powder Diffraction: Convolution based profile fitting, Blackwell, New Jersey, 2008. doi.org/10.6028%2Fjres.109.002.
Google Scholar
[20]
I.D. Brown, D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database, Acta Crystallogr., Sect. B: Struct. Sci., 41 (1985) 244-247. doi.org/10.1107/S0108768185002063.
DOI: 10.1107/s0108768185002063
Google Scholar
[21]
I.D. Brown, Recent Developments in the Methods and Applications of the Bond Valence Model, Chem. Rev. 109 (2009) 6858–6919. doi.org/10.1021/cr900053k.
DOI: 10.1021/cr900053k
Google Scholar
[22]
N. E. Brese and M. O'Keeffe, Bond-valence parameters for solids, Acta Cryst., Sect. B: Struct. Sci., 47 (1991) 192-197. doi.org/10.1107/S0108768190011041.
DOI: 10.1107/s0108768190011041
Google Scholar
[23]
R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Cryst. 32 (1976) 751−767. 10.1107/s0567739476001551.
DOI: 10.1107/s0567739476001551
Google Scholar
[24]
D.N. Aryyriou, C.J. Howard, Evaluation of Electrostatic Potentials and Madelung Constants in Ionic Crystals by the Method of Spherically Symmetric Equivalent Charges, Aust. J. Phys., 45 (1992) 239-52. doi.org/10.1071/PH920239.
DOI: 10.1071/ph920239
Google Scholar