[1]
L. Colla, L. Fedele, S. Mancin, B. Buonomo, D. Ercole, and O. Manca, Nano-PCMs for passive electronic cooling applications,, J. Phys. Conf. Ser., 655(1) (2015) 012030.
DOI: 10.1088/1742-6596/655/1/012030
Google Scholar
[2]
W. Wu, G. Zhang, X. Ke, X. Yang, Z. Wang, and C. Liu, Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management,, Energy Convers. Manag., 101 (2015) 278–284.
DOI: 10.1016/j.enconman.2015.05.050
Google Scholar
[3]
S. Ruokangas, Sasu Ruokangas Rubber - Phase Change Material Composites for,, no. September, (2017).
Google Scholar
[4]
V. R. Babu and A. Arunraj, Thermo regulated clothing with phase change materials,, J. Text. Eng. Fash. J. Text. Eng. Fash. Technol., 4 (2018) 344-347.
Google Scholar
[5]
J. Pereira da Cunha and P. Eames, Thermal energy storage for low and medium temperature applications using phase change materials - A review,, Appl. Energy, 177 (20I6) 227-238.
DOI: 10.1016/j.apenergy.2016.05.097
Google Scholar
[6]
S. K. Jha, S. Nallusamy, and N. M. Prabu, Study and analysis of thermal energy storage system using phase change materials (PCM),, Int. J. Appl. Eng. Res., 10(62) (2015) 118–122.
Google Scholar
[7]
Y. Cui, J. Xie, J. Liu, and S. Pan, Review of Phase Change Materials Integrated in Building Walls for Energy Saving,, Procedia Eng., 121 (2015) 763–770.
DOI: 10.1016/j.proeng.2015.09.027
Google Scholar
[8]
J. M. Khodadadi, L. Fan, and H. Babaei, Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: A review,, Renewable and Sustainable Energy Reviews 24 (2013) 418-444.
DOI: 10.1016/j.rser.2013.03.031
Google Scholar
[9]
M. de Almeida Bezerra, M. A. Zezzi Arruda, and S. L. Costa Ferreira, Cloud point extraction as a procedure of separation and pre-concentration for metal determination using spectroanalytical techniques: A review,, Appl. Spectrosc. Rev., 40(4) (2005) 269–299.
DOI: 10.1080/05704920500230880
Google Scholar
[10]
F. Loosli and S. Stoll, Effect of surfactants, pH and water hardness on the surface properties and agglomeration behavior of engineered TiO2 nanoparticles,, Environ. Sci. Nano, 4(1) (2017) 203–211.
DOI: 10.1039/c6en00339g
Google Scholar
[11]
H. M. Ali, H. Babar, T. R. Shah, M. U. Sajid, M. A. Qasim, and S. Javed, Preparation techniques of TiO2 nanofluids and challenges: A review,, Appl. Sci., 8(4) (2018) 587.
DOI: 10.3390/app8040587
Google Scholar
[12]
L. L. Schramm, E. N. Stasiuk, and D. G. Marangoni, Surfactants and their applications,, Annu. Reports Prog. Chem. - Sect. C, 99 (2003) 3–48.
DOI: 10.1039/b208499f
Google Scholar
[13]
J. S. Sefadi, A. S. Luyt, J. Pionteck, F. Piana, and U. Gohs, Effect of surfactant and electron treatment on the electrical and thermal conductivity as well as thermal and mechanical properties of ethylene vinyl acetate/expanded graphite composites,, J. Appl. Polym. Sci., 132 (2015) 42396.
DOI: 10.1002/app.42396
Google Scholar
[14]
S. Gnanam and V. Rajendran, Influence of Various Surfactants on Size, Morphology, and Optical Properties of CeO 2 Nanostructures via Facile Hydrothermal Route ,, J. Nanoparticles, 2013 (2013) 1–6.
DOI: 10.1155/2013/839391
Google Scholar
[15]
R. Luo, S. Wang, T. Wang, C. Zhu, T. Nomura, and T. Akiyama, Fabrication of paraffin@SiO2 shape-stabilized composite phase change material via chemical precipitation method for building energy conservation,, Energy Build., 108 (2015) 373-380.
DOI: 10.1016/j.enbuild.2015.09.043
Google Scholar
[16]
B. Zhang, Y. Tian, X. Jin, T. Y. Lo, and H. Cui, "Thermal and Mechanical Properties of Expanded Graphite / Paraffin Gypsum-Based Composite Material Reinforced by Carbon Fiber, 11(11) (2018) 2205.
DOI: 10.3390/ma11112205
Google Scholar
[17]
J. V. Marques Zoccal, F. de Oliveira Arouca, and J. A. Silveira Goncalves, Síntesis y caracterización de nanopartículas de TiO2 por el método Pechini.,, Mater. Sci. Forum, 660–661 (2010) 6.
Google Scholar
[18]
J. Wang, J. Yu, X. Zhu, and X. Z. Kong, Preparation of hollow TiO 2 nanoparticles through TiO 2 deposition on polystyrene latex particles and characterizations of their structure and photocatalytic activity,, 7 (2012), 1–8.
DOI: 10.1186/1556-276x-7-646
Google Scholar
[19]
J. Wang, H. Xie, Z. Guo, L. Guan, and Y. Li, Improved thermal properties of paraffin wax by the addition of TiO2 nanoparticles,, Appl. Therm. Eng., 73(2) (2014) 1541–1547.
DOI: 10.1016/j.applthermaleng.2014.05.078
Google Scholar
[20]
S. Nabi and E. Shirani, Simultaneous effects of Brownian motion and clustering of nanoparticles on thermal conductivity of nanofluids,, Iran. J. Sci. Technol. - Trans. Mech. Eng., 36 (2012) 53–68.
Google Scholar
[21]
C. R. C. Hak, D. N. E. Fatanah, Y. Abdullah and M. Y. M. Sulaiman, The Effect of Surfactants on the Stability of TiO2 Aqueous Suspension,, Int. J. Curr. Res. Sci. Eng. Technol., 1 (2018) 172–178.
DOI: 10.30967/ijcrset.1.s1.2018.172-178
Google Scholar