[1]
C.M. Chiu, Y.H. Chang, C.M. Chiu, and Y.H. Chang, The structure, electrical and sensing properties for CO of the La0.8Sr0.2Co1-xNixO3 system, Mater. Sci. Eng. A Struct. 266 (1999) 93–98.
DOI: 10.1016/s0921-5093(99)00037-4
Google Scholar
[2]
R. Malik, V.K. Tomer, Y.K. Mishra, and L. Lin, Functional gas sensing nanomaterials: A panoramic view, App. Phys. Rev. 7 (2020) 021301.
DOI: 10.1063/1.5123479
Google Scholar
[3]
T. Zhang, L. Liu, Q. Qi, S. Li, and G. Lu, Development of microstructure In/Pd-doped SnO2 sensor for low-level CO detection, Sensors Actuators B Chem. 139 (2009) 287–291.
DOI: 10.1016/j.snb.2009.03.036
Google Scholar
[4]
T. Yanagimoto, Y.T. Yu, and K. Kaneko, Microstructure and CO gas sensing property of Au/SnO2 core-shell structure nanoparticles synthesized by precipitation method and microwave-assisted hydrothermal synthesis method, Sensors Actuators B Chem. 166 (2012) 31–35.
DOI: 10.1016/j.snb.2011.11.047
Google Scholar
[5]
J.H. Sung, Y.S. Lee, J.W. Lim, Y.H. Hong, and D.D. Lee, Sensing characteristics of tin dioxide/gold sensor prepared by coprecipitation method, Sensors Actuators B Chem. 66 (2000) 149–152.
DOI: 10.1016/s0925-4005(00)00319-1
Google Scholar
[6]
A.N. Petrov, O.F. Kononchuk, A.V. Andreev, V.A. Cherepanov, and P. Kofstad, Crystal structure, electrical and magnetic properties of La1 − xSrxCoO3 – y, Solid State Ionics 3–4 (1995) 189–199.
DOI: 10.1016/0167-2738(95)00114-l
Google Scholar
[7]
A. Zuev, A. Vylkov, A. Petrov, and D. Tsvetkov, Defect structure and defect-induced expansion of undoped oxygen deficient perovskite LaCoO3−δ, Solid State Ionics 179 (2008) 1876–1879.
DOI: 10.1016/j.ssi.2008.06.001
Google Scholar
[8]
J.G. Morales, J.J. Burgues, T. Boix, J. Fraile and, R.R. Clemente, Precipitation of Stoichiometric Hydroxyapatite by a Continuous Method, Cryst. Res. Technol 35 (2001) 15-22.
DOI: 10.1002/1521-4079(200101)36:1<15::aid-crat15>3.0.co;2-e
Google Scholar
[9]
M. Aizawa, F.S. Howell, K. Itatani, Y. Yokogawa, K. Nishizawa, M. Toriyama, and T. Kameyama, Fabrication of porous ceramics with well-controlled open pores by sintering of fibrous hydroxyapatite particles, J. Ceram. Soc. (2000) 249-253.
DOI: 10.2109/jcersj.108.1255_249
Google Scholar
[10]
H. Tanaka, M. Chikazawa, K. Kandori, and T. Ishikawa, Influence of thermal treatment on the structure of calcium hydroxyapatite, Phys. Chem. Chem. Phys. 2 (2000) 2647-2650.
DOI: 10.1039/b001877p
Google Scholar
[11]
R.N. Panda, H. Ming-Fa, R.J. Chung, and T.S. Chin, X-Ray Diffractometry and X-Ray Photoelectron Spectroscopy Investigations of Nanocrytalline Hydroxyapatite Synthesized by a Hydroxide Gel Technique, Jpn J. Appl. Phys. 40 (2000) 5030.
DOI: 10.1143/jjap.40.5030
Google Scholar
[12]
M.A. Verges, C.F. Ganzalez, M.M. Gallego, J.D. Solier, I. Cachadina, and E. Matijevic , A new route for the synthesis of calcium-deficient hydroxyapatites with low Ca/P ratio: Both spectroscopic and electric characterization, J. Matter. Res. 15 (2000) 2526.
DOI: 10.1557/jmr.2000.0362
Google Scholar
[13]
M. Nagai, T. Nishino, and T. Saeki, A new type of CO2 gas sensor comprising porous hydroxyapatite ceramics, Sensors & Actuators 15 (1988) 145.
DOI: 10.1016/0250-6874(88)87004-5
Google Scholar
[14]
K.A. Gross, C.C. Berndt, P. Stephens, and R. Dinnebier, Oxyapatite in hydroxyapatite coatings, J. Matter. Sci. 33 (1998) 3985–3991.
Google Scholar
[15]
N.A.N Ayawei, Ebelegi, and D. Wankasi, Modelling and interpretation of adsorption isotherms. Hindawi 11 (2017).
DOI: 10.1155/2017/3039817
Google Scholar
[16]
R.U. Mene, M.P. Mahabole, K.C. Mohite, and R.S. Khairnar, Improved gas sensing and dielectric properties of Fe doped hydroxyapatite thick films: Effect of molar concentrations, Materials Research Bulletin 50 (2014) 227–234.
DOI: 10.1016/j.materresbull.2013.10.040
Google Scholar
[17]
R.U. Mene, M.P. Mahabole, K.C. Mohite, and R.S. Khairnar, Fe doped hydroxyapatite thick films modified via swift heavy ion irradiation for CO and CO2 gas sensing application, Journal of Alloys and Compounds 584 (2014) 487–493.
DOI: 10.1016/j.jallcom.2013.09.111
Google Scholar
[18]
L. Huixia, L. Yong, L. Lanlan, T. Yanni, Z. Qing, and L. Kun, Development of ammonia sensors by using conductive polymer / hydroxyapatite composite materials, Materials Science & Engineering C 59 (2016) 438–444.
DOI: 10.1016/j.msec.2015.10.036
Google Scholar
[19]
S.R. Anjum, V.N. Narwade, K.A. Bogle, and R.S. Khairnar, Graphite doped Hydroxyapatite nanoceramic: Selective alcohol sensor, Nano-Structures and Nano-Objects 14 (2018) 98–105.
DOI: 10.1016/j.nanoso.2018.01.010
Google Scholar
[20]
U.M. Ravindra, P.M. Megha, S. Ramphal, and S.K, Rajendra, Enhancement in CO gas sensing properties of hydroxyapatite thick films: Effect of swift heavy ion irradiation, Vacuum 86 (2011) 66-71.
DOI: 10.1016/j.vacuum.2011.04.015
Google Scholar
[21]
J.C. Ding, H.Y. Li, T.C. Cao, Z.X. Cai, X.X. Wang, and X. Guo, Characteristics and sensing properties of CO gas sensors based on LaCo1−xFexO3 nanoparticles, Solid State Ionics 303 (2017) 97–102.
DOI: 10.1016/j.ssi.2017.02.021
Google Scholar
[22]
P. Giannozzi, S. Baroni, N. Bonini et al., Quantum Espresso: A modular and open-source software project for quantum simulations of materials, J. Phys. Cond. Mat. 21 (2009) 395502.
Google Scholar
[23]
P. Giannozzi, O. Andreussi, T. Brumme et al., Advanced capabilities for materials modelling with Quantum Espresso, J. Phys. Cond. Mat. 29 (2017) 465901.
Google Scholar
[24]
J.M. Hughes, M. Cameron, and K.D. Crowley, Structural variation in natural F, OH, and Cl apatites, American Mineralogist 74 (1989) 870-876.
Google Scholar
[25]
P.E. Blöchl, Projector Augmented-Wave method, Phys. Rev. B 50 (1994) 953-979.
Google Scholar
[26]
J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett. 100 (2008) 136406.
DOI: 10.1103/physrevlett.102.039902
Google Scholar
[27]
W. Zu and P. Wu, Surface energy of hydroxyapatite: A DFT study, Chem. Phys. Lett. 396 (2004) 38-42.
Google Scholar