Investigation of CO Adsorption on Hydroxyapatite (001) Surface Using Density Functional Theory

Article Preview

Abstract:

Hydroxyapatite (HA) is a phosphate mineral with the chemical formula of Ca10(PO4)6(OH)2. The presence of pores in HA allows easy interaction with other compounds, so it can be used to detect the CO gas. Other than that, the hydroxyl group in hydroxyapatite allows the ion exchange process, a significant reaction in a gas sensor. The interaction of hydroxyapatite with CO gas has been studied using density functional theory. The HA adsorption potential energy surface was investigated using slab model with (001) expansion and 10 Å vacuum. CO gas kept fixed 1.0 Å above the HA surface and traced along the surface with grid 10×10. The result shows that the surface is divided into two main potentials that more likely and unlikely for CO to stay. The CO gas is most likely to stay between two oxygen from (PO3) tetrahedral that pointing down.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1028)

Pages:

215-220

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.M. Chiu, Y.H. Chang, C.M. Chiu, and Y.H. Chang, The structure, electrical and sensing properties for CO of the La0.8Sr0.2Co1-xNixO3 system, Mater. Sci. Eng. A Struct. 266 (1999) 93–98.

DOI: 10.1016/s0921-5093(99)00037-4

Google Scholar

[2] R. Malik, V.K. Tomer, Y.K. Mishra, and L. Lin, Functional gas sensing nanomaterials: A panoramic view, App. Phys. Rev. 7 (2020) 021301.

DOI: 10.1063/1.5123479

Google Scholar

[3] T. Zhang, L. Liu, Q. Qi, S. Li, and G. Lu, Development of microstructure In/Pd-doped SnO2 sensor for low-level CO detection, Sensors Actuators B Chem. 139 (2009) 287–291.

DOI: 10.1016/j.snb.2009.03.036

Google Scholar

[4] T. Yanagimoto, Y.T. Yu, and K. Kaneko, Microstructure and CO gas sensing property of Au/SnO2 core-shell structure nanoparticles synthesized by precipitation method and microwave-assisted hydrothermal synthesis method, Sensors Actuators B Chem. 166 (2012) 31–35.

DOI: 10.1016/j.snb.2011.11.047

Google Scholar

[5] J.H. Sung, Y.S. Lee, J.W. Lim, Y.H. Hong, and D.D. Lee, Sensing characteristics of tin dioxide/gold sensor prepared by coprecipitation method, Sensors Actuators B Chem. 66 (2000) 149–152.

DOI: 10.1016/s0925-4005(00)00319-1

Google Scholar

[6] A.N. Petrov, O.F. Kononchuk, A.V. Andreev, V.A. Cherepanov, and P. Kofstad, Crystal structure, electrical and magnetic properties of La1 − xSrxCoO3 – y, Solid State Ionics 3–4 (1995) 189–199.

DOI: 10.1016/0167-2738(95)00114-l

Google Scholar

[7] A. Zuev, A. Vylkov, A. Petrov, and D. Tsvetkov, Defect structure and defect-induced expansion of undoped oxygen deficient perovskite LaCoO3−δ, Solid State Ionics 179 (2008) 1876–1879.

DOI: 10.1016/j.ssi.2008.06.001

Google Scholar

[8] J.G. Morales, J.J. Burgues, T. Boix, J. Fraile and, R.R. Clemente, Precipitation of Stoichiometric Hydroxyapatite by a Continuous Method, Cryst. Res. Technol 35 (2001) 15-22.

DOI: 10.1002/1521-4079(200101)36:1<15::aid-crat15>3.0.co;2-e

Google Scholar

[9] M. Aizawa, F.S. Howell, K. Itatani, Y. Yokogawa, K. Nishizawa, M. Toriyama, and T. Kameyama, Fabrication of porous ceramics with well-controlled open pores by sintering of fibrous hydroxyapatite particles, J. Ceram. Soc. (2000) 249-253.

DOI: 10.2109/jcersj.108.1255_249

Google Scholar

[10] H. Tanaka, M. Chikazawa, K. Kandori, and T. Ishikawa, Influence of thermal treatment on the structure of calcium hydroxyapatite, Phys. Chem. Chem. Phys. 2 (2000) 2647-2650.

DOI: 10.1039/b001877p

Google Scholar

[11] R.N. Panda, H. Ming-Fa, R.J. Chung, and T.S. Chin, X-Ray Diffractometry and X-Ray Photoelectron Spectroscopy Investigations of Nanocrytalline Hydroxyapatite Synthesized by a Hydroxide Gel Technique, Jpn J. Appl. Phys. 40 (2000) 5030.

DOI: 10.1143/jjap.40.5030

Google Scholar

[12] M.A. Verges, C.F. Ganzalez, M.M. Gallego, J.D. Solier, I. Cachadina, and E. Matijevic , A new route for the synthesis of calcium-deficient hydroxyapatites with low Ca/P ratio: Both spectroscopic and electric characterization, J. Matter. Res. 15 (2000) 2526.

DOI: 10.1557/jmr.2000.0362

Google Scholar

[13] M. Nagai, T. Nishino, and T. Saeki, A new type of CO2 gas sensor comprising porous hydroxyapatite ceramics, Sensors & Actuators 15 (1988) 145.

DOI: 10.1016/0250-6874(88)87004-5

Google Scholar

[14] K.A. Gross, C.C. Berndt, P. Stephens, and R. Dinnebier, Oxyapatite in hydroxyapatite coatings, J. Matter. Sci. 33 (1998) 3985–3991.

Google Scholar

[15] N.A.N Ayawei, Ebelegi, and D. Wankasi, Modelling and interpretation of adsorption isotherms. Hindawi 11 (2017).

DOI: 10.1155/2017/3039817

Google Scholar

[16] R.U. Mene, M.P. Mahabole, K.C. Mohite, and R.S. Khairnar, Improved gas sensing and dielectric properties of Fe doped hydroxyapatite thick films: Effect of molar concentrations, Materials Research Bulletin 50 (2014) 227–234.

DOI: 10.1016/j.materresbull.2013.10.040

Google Scholar

[17] R.U. Mene, M.P. Mahabole, K.C. Mohite, and R.S. Khairnar, Fe doped hydroxyapatite thick films modified via swift heavy ion irradiation for CO and CO2 gas sensing application, Journal of Alloys and Compounds 584 (2014) 487–493.

DOI: 10.1016/j.jallcom.2013.09.111

Google Scholar

[18] L. Huixia, L. Yong, L. Lanlan, T. Yanni, Z. Qing, and L. Kun, Development of ammonia sensors by using conductive polymer / hydroxyapatite composite materials, Materials Science & Engineering C 59 (2016) 438–444.

DOI: 10.1016/j.msec.2015.10.036

Google Scholar

[19] S.R. Anjum, V.N. Narwade, K.A. Bogle, and R.S. Khairnar, Graphite doped Hydroxyapatite nanoceramic: Selective alcohol sensor, Nano-Structures and Nano-Objects 14 (2018) 98–105.

DOI: 10.1016/j.nanoso.2018.01.010

Google Scholar

[20] U.M. Ravindra, P.M. Megha, S. Ramphal, and S.K, Rajendra, Enhancement in CO gas sensing properties of hydroxyapatite thick films: Effect of swift heavy ion irradiation, Vacuum 86 (2011) 66-71.

DOI: 10.1016/j.vacuum.2011.04.015

Google Scholar

[21] J.C. Ding, H.Y. Li, T.C. Cao, Z.X. Cai, X.X. Wang, and X. Guo, Characteristics and sensing properties of CO gas sensors based on LaCo1−xFexO3 nanoparticles, Solid State Ionics 303 (2017) 97–102.

DOI: 10.1016/j.ssi.2017.02.021

Google Scholar

[22] P. Giannozzi, S. Baroni, N. Bonini et al., Quantum Espresso: A modular and open-source software project for quantum simulations of materials, J. Phys. Cond. Mat. 21 (2009) 395502.

Google Scholar

[23] P. Giannozzi, O. Andreussi, T. Brumme et al., Advanced capabilities for materials modelling with Quantum Espresso, J. Phys. Cond. Mat. 29 (2017) 465901.

Google Scholar

[24] J.M. Hughes, M. Cameron, and K.D. Crowley, Structural variation in natural F, OH, and Cl apatites, American Mineralogist 74 (1989) 870-876.

Google Scholar

[25] P.E. Blöchl, Projector Augmented-Wave method, Phys. Rev. B 50 (1994) 953-979.

Google Scholar

[26] J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett. 100 (2008) 136406.

DOI: 10.1103/physrevlett.102.039902

Google Scholar

[27] W. Zu and P. Wu, Surface energy of hydroxyapatite: A DFT study, Chem. Phys. Lett. 396 (2004) 38-42.

Google Scholar