Nano-Goethite (α-FeOOH) Magnetic Structure Investigated Using Ising Core-Shell Model: Preliminary Study

Article Preview

Abstract:

Ising core-shell model was proposed to reconstruct superparamagnetism hysteresis in nano-goethite (α-FeOOH). Core and shell set as antiferromagnetic and paramagnetic state respectively. Core and shell radius varies until the theoretical hysteresis fit with experiment hysteresis. At low temperature, the hysteresis reconstructed nicely with 55% antiferromagnetic core contribution and 45% paramagnetic shell contribution. At high temperature, the core-shell model show unrealistic result compared to the pure paramagnetic state.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1028)

Pages:

193-198

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. F. K. Cooper, A. Ionescu, R. M. Langford, K. R. A. Ziebeck, C. H. W. Barnes, R. Gruar, C. Tighe, J. A. Darr, N. T. K. Thanh and B. Ouddaliaf, Core/shell Magnetism in NiO Nanoparticles, J. App. Phys. 114 (2013) 083906.

DOI: 10.1063/1.4819807

Google Scholar

[2] S. H. Kilcoyne and R. Cywinski, Ferritin: A Model Superparamagnet, J. Magnetism and Magnetic Materials 140-141 (1995) 1466-1467.

DOI: 10.1016/0304-8853(94)00626-1

Google Scholar

[3] E. Brok, K. Lefmann, G.J. Nilsen, M. Kure and C. Fradsen, Off-axis Spin Orientation in Geothite Nanparticles, Phys. Rev. B 96 (2017) 104426.

DOI: 10.1103/physrevb.96.104426

Google Scholar

[4] D. Lin, A. C. Nunes, C. F. Majkrzak and A. E. Berkowitz, Polarized Neutron Study of the Density Distribution within a CoFe2O4 Colloidal Particle II, J. Mag. and Magn. Mat. 145 (1995) 343-348.

DOI: 10.1016/0304-8853(94)01627-5

Google Scholar

[5] D. E. Madsen, L. Cervera-Gontard, T. Kasama, R. E. Dunin-Borkowski, C.B. Koch, M.F. Hansen, C. Fradsen and S. Morup, Magnetic Fluctuations in Nanosized Goethite (α-FeOOH) Grains, J. Phys. Condens. Matt. 21 (2009) 016007.

DOI: 10.1088/0953-8984/21/1/016007

Google Scholar

[6] V. S. Leite and W. Figueriedo, Monte Carlo Simulations of Antiferromagnetic of Small Particles, Brazilian J. of Phys. 34-2A (2004) 452-454.

DOI: 10.1590/s0103-97332004000300025

Google Scholar

[7] O. Odzemir and D.J. Dunlop, Thermoremanence and Neel Temperature of Goethite, Geophys. Research Lett. 23 (1996) 921-924.

DOI: 10.1029/96gl00904

Google Scholar

[8] N. L. Kartika, Low Temperature Synthesis and Magnetic Properties of Goethite α-FeOOH (Unpublished Master Thesis), Institut Teknologi Bandung, Bandung (2015).

Google Scholar

[9] N. L. Kartika and A.A. Nugroho, Comparison between Hydrothermal Method and Stirring Method for Goethite Synthesis with Impurity Parameters, Jurnal Instrumentasi 39-2 (2015) 97-103.

Google Scholar

[10] H. Zhang, M. Bayne, S. Fernando, B. Legg, M. Zhu, R. L. Penn, J. F. Bandfield, Size-dependent Bandgap of Nanogoethite, J. Phys. Chem. C 155 (2011) 17704-17710.

DOI: 10.1021/jp205192a

Google Scholar

[11] G. K. Williamson and W. H. Hall, X-Ray broadening from filed aluminium and tungsten, Acta Metall. 1 (1953) 22-31.

Google Scholar

[12] V. D. Mote, Y. Purushotham, and B. N. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles, J. Theor. Appl. Phys. 6 (2012) 1–8.

DOI: 10.1186/2251-7235-6-6

Google Scholar

[13] N. S. Gonçalves, J. A. Carvalho, Z. M. Lima, and J. M. Sasaki, Size-strain study of NiO nanoparticles by X-ray powder diffraction line broadening, Mater. Lett. 72 (2012) 36–38.

DOI: 10.1016/j.matlet.2011.12.046

Google Scholar

[14] Ernst Ising, Beitrag zur Theorie des Ferromagnetismus, Z. Phys., 31-1 (1925) 253–258.

DOI: 10.1007/bf02980577

Google Scholar

[15] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equation of State Calculations by Fast Computing Machines, J. Chem. Phys. 21 (1953) 1087.

DOI: 10.2172/4390578

Google Scholar