[1]
B. Yan, C. Felser, Topological materials: Weyl semimetals, Annual Review of Condensed Matter Physics 8 (2017) 337-354.
DOI: 10.1146/annurev-conmatphys-031016-025458
Google Scholar
[2]
N. P. Armitage, E. J. Mele, A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Reviews of Modern Physics 90(1) (2018) 015001.
DOI: 10.1103/revmodphys.90.015001
Google Scholar
[3]
K. Kuroda, T. Tomita, M. T. Suzuki, C. Bareille, A. A. Nugroho, P. Goswami, M. Ochi, M. Ikhlas, M. Nakayama, S. Akebi, R. Noguchi, Evidence for magnetic Weyl fermions in a correlated metal. Nature materials 16(11) (2017) 1090-1095.
DOI: 10.1038/nmat4987
Google Scholar
[4]
S. Tomiyoshi, Polarized neutron diffraction study of the spin structure of Mn3Sn. Journal of the Physical Society of Japan 51(3) (1982) 803-810.
DOI: 10.1143/jpsj.51.803
Google Scholar
[5]
S. Nakatsuji, N. Kiyohara, T. Higo,. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature, Nature 527(7577) (2015) 212-215.
DOI: 10.1038/nature15723
Google Scholar
[6]
F. Bernardini, P. Bonfa, S. Massidda, and R. De Renzi, Ab initio strategy for muon site assignment in wide band gap fluorides, Physical Review B 87(11) (2013) 115148.
DOI: 10.1103/physrevb.87.115148
Google Scholar
[7]
U. P. Singh, A. K. Pal; L. Chandrasekaran, K. P. Gupta, Study of the manganese-rich end of the Mn-Sn sytem, Transactions of the Metallurgical Society of Aime 242 (1968) 1661-1663.
Google Scholar
[8]
K. Nakamura, T. Ito, A. J. Freeman, L. Zhong and J. Fernandez-de-Castro, Intra-atomic noncollinear magnetism and the magnetic structures of antiferromagnetic FeMn, Physical Review B 67(1) (2003) 014405.
DOI: 10.1103/physrevb.67.014405
Google Scholar
[9]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Physical Review Letters 77(18) (1996) 3865.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[10]
U. von Barth, and L. Hedin, A local exchange-correlation potential for the spin polarized case, Journal of Physics C: Solid State Physics 5(13) (1972) 1629.
DOI: 10.1088/0022-3719/5/13/012
Google Scholar
[11]
F. H. Murdaka, A. M. Pradipto, K. Nakamura, and A. A. Nugroho, Benchmarking full-potential linearized augmented plane wave (FLAPW) method for determination of muon stopping sites in LiF, Key Engineering Materials 855 (2020) 248-252.
DOI: 10.4028/www.scientific.net/kem.855.248
Google Scholar
[12]
F. H. Murdaka, K. Nakamura, and A. A. Nugroho, Estimation of muon stopping site in CoCr2O4 using density functional theory, IOP Conference Series: Materials Science and Engineering 924(1) (2020) 012027.
DOI: 10.1088/1757-899x/924/1/012027
Google Scholar