Influence of Carbon Concentration as Coating on Electrical Conductivity of LiFeSi0.03P0.97O4/C

Article Preview

Abstract:

This research study about the influence of carbon concenttration as coating on electrical conductivity of LiFeSi0.03P0.97O4/C. Synthesis of LiFeSi0.03P0.97O4/C was carried out different carbon concentrations of 7, 9, and 11 wt%. The raw materials used are Fe2O3, Li2CO3, (NH4)2HPO4, SiO2 as ion Si doping, and glucose as carbon sources. The XRD analysis results showed that all the diffraction peaks in samples were the olivine LiFePO4 phase. From the EIS result, Samples with the addition carbon concentration of 9 wt% produce the highest electrical conductivity values of 4.18 x 10-7 S/cm.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1028)

Pages:

185-190

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Y. Chew et al., Thin nanostructured LiMn2O4 films by flame spray deposition and in situ annealing method, J. Power Sources 189 (2009) 449–453.

DOI: 10.1016/j.jpowsour.2008.12.085

Google Scholar

[2] O. Toprakci, H. A. K. Toprakci, L. Ji, and X. Zhang, Fabrication and Electrochemical Characteristics of LiFePO4 Powders for Lithium-Ion Batteries, KONA Powder Part. J. 28 (2010) 50–73.

DOI: 10.14356/kona.2010008

Google Scholar

[3] K. Liu, Y. Liu, D. Lin, A. Pei, and Y. Cui, Materials for lithium-ion battery safety, Sciences Advances 4 (2018) 9820.

Google Scholar

[4] P. S. Suci, M. Zainuri, and E. Endarko, The Effects of Nickel Doping on the Structure of LiNixFe1-xPO4/C Cathode Material, Materials Science Forum, 965 (2019) 45-49.

Google Scholar

[5] X. Sun, K. Sun, C. Chen, H. Sun, and B. Cui, Controlled Preparation and Surface Structure Characterization of Carbon-Coated Lithium Iron Phosphate and Electrochemical Studies as Cathode Materials for Lithium Ion Battery, Int. J. Mater. Chem. 2 (2012) 218–224.

DOI: 10.5923/j.ijmc.20120205.06

Google Scholar

[6] A. K. Padhi, Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries, J. Electrochem. Soc. 144 (1997) 1188.

DOI: 10.1149/1.1837571

Google Scholar

[7] G. T.-K. Fey, Y. G. Chen, and H.-M. Kao, Electrochemical properties of LiFePO4 prepared via ball-milling, J. Power Sources 189 (2009) 169–178.

DOI: 10.1016/j.jpowsour.2008.10.016

Google Scholar

[8] R. Amin et al., Silicon-Doped LiFePO4 Single Crystals: Growth, Conductivity Behavior, and Diffusivity, Adv. Funct. Mater. 19 (2009) 1697–1704.

DOI: 10.1002/adfm.200801604

Google Scholar

[9] J.-W. Zhao, S.-X. Zhao, X. Wu, H.-M. Cheng, and C.-W. Nan, Double role of silicon in improving the rate performance of LiFePO4 cathode materials, J. Alloys Compd. 699 (2017) 849–855.

DOI: 10.1016/j.jallcom.2016.12.430

Google Scholar

[10] J. Wang, Z. Shao, and H. Ru, Influence of carbon sources on LiFePO4/C composites synthesized by the high-temperature high-energy ball milling method, Ceram. Int. 40 (2014) 6979–6985.

DOI: 10.1016/j.ceramint.2013.12.025

Google Scholar

[11] K. S. Park, K. T. Kang, S. B. Lee, G. Y. Kim, Y. J. Park, and H. G. Kim, Synthesis of LiFePO4 with fine particle by co-precipitation method, Mater. Res. Bull., vol. 39 (2004) 1803–1810.

DOI: 10.1016/j.materresbull.2004.07.003

Google Scholar

[12] X. Liu and Z. Zhao, Synthesis of LiFePO4/C by solid–liquid reaction milling method, Powder Technol., vol. 197 (2010) 309–313.

DOI: 10.1016/j.powtec.2009.09.019

Google Scholar

[13] D. Choi and P. N. Kumta, Surfactant based sol–gel approach to nanostructured LiFePO4 for high rate Li-ion batteries, J. Power Sources, vol. 163 (2007) 1064–1069.

DOI: 10.1016/j.jpowsour.2006.09.082

Google Scholar

[14] S. H. Ju and Y. C. Kang, LiFePO4/C cathode powders prepared by spray pyrolysis from the colloidal spray solution containing nano-sized carbon black, Mater. Chem. Phys. 107 (2008) 328–333.

DOI: 10.1016/j.matchemphys.2007.07.025

Google Scholar

[15] J. Wang, Y.-J. Gu, W.-L. Kong, H.-Q. Liu, Y.-B. Chen, and W. Liu, Effect of carbon coating on the crystal orientation and electrochemical performance of nanocrystalline LiFePO4, Solid State Ion., 327 (2018) 11–17.

DOI: 10.1016/j.ssi.2018.10.015

Google Scholar

[16] J. Wang and X. Sun, Olivine LiFePO4 : the remaining challenges for future energy storage, Energy Environ. Sci., vol. 8( 2015) 1110–1138.

DOI: 10.1039/c4ee04016c

Google Scholar

[17] Z. Tian, S. Liu, F. Ye, S. Yao, Z. Zhou, and S. Wang, Synthesis and characterization of LiFePO4 electrode materials coated by graphene, Appl. Surf. Sci. 305 (2014) 427–432.

DOI: 10.1016/j.apsusc.2014.03.106

Google Scholar