[1]
S. Y. Chew et al., Thin nanostructured LiMn2O4 films by flame spray deposition and in situ annealing method, J. Power Sources 189 (2009) 449–453.
DOI: 10.1016/j.jpowsour.2008.12.085
Google Scholar
[2]
O. Toprakci, H. A. K. Toprakci, L. Ji, and X. Zhang, Fabrication and Electrochemical Characteristics of LiFePO4 Powders for Lithium-Ion Batteries, KONA Powder Part. J. 28 (2010) 50–73.
DOI: 10.14356/kona.2010008
Google Scholar
[3]
K. Liu, Y. Liu, D. Lin, A. Pei, and Y. Cui, Materials for lithium-ion battery safety, Sciences Advances 4 (2018) 9820.
Google Scholar
[4]
P. S. Suci, M. Zainuri, and E. Endarko, The Effects of Nickel Doping on the Structure of LiNixFe1-xPO4/C Cathode Material, Materials Science Forum, 965 (2019) 45-49.
Google Scholar
[5]
X. Sun, K. Sun, C. Chen, H. Sun, and B. Cui, Controlled Preparation and Surface Structure Characterization of Carbon-Coated Lithium Iron Phosphate and Electrochemical Studies as Cathode Materials for Lithium Ion Battery, Int. J. Mater. Chem. 2 (2012) 218–224.
DOI: 10.5923/j.ijmc.20120205.06
Google Scholar
[6]
A. K. Padhi, Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries, J. Electrochem. Soc. 144 (1997) 1188.
DOI: 10.1149/1.1837571
Google Scholar
[7]
G. T.-K. Fey, Y. G. Chen, and H.-M. Kao, Electrochemical properties of LiFePO4 prepared via ball-milling, J. Power Sources 189 (2009) 169–178.
DOI: 10.1016/j.jpowsour.2008.10.016
Google Scholar
[8]
R. Amin et al., Silicon-Doped LiFePO4 Single Crystals: Growth, Conductivity Behavior, and Diffusivity, Adv. Funct. Mater. 19 (2009) 1697–1704.
DOI: 10.1002/adfm.200801604
Google Scholar
[9]
J.-W. Zhao, S.-X. Zhao, X. Wu, H.-M. Cheng, and C.-W. Nan, Double role of silicon in improving the rate performance of LiFePO4 cathode materials, J. Alloys Compd. 699 (2017) 849–855.
DOI: 10.1016/j.jallcom.2016.12.430
Google Scholar
[10]
J. Wang, Z. Shao, and H. Ru, Influence of carbon sources on LiFePO4/C composites synthesized by the high-temperature high-energy ball milling method, Ceram. Int. 40 (2014) 6979–6985.
DOI: 10.1016/j.ceramint.2013.12.025
Google Scholar
[11]
K. S. Park, K. T. Kang, S. B. Lee, G. Y. Kim, Y. J. Park, and H. G. Kim, Synthesis of LiFePO4 with fine particle by co-precipitation method, Mater. Res. Bull., vol. 39 (2004) 1803–1810.
DOI: 10.1016/j.materresbull.2004.07.003
Google Scholar
[12]
X. Liu and Z. Zhao, Synthesis of LiFePO4/C by solid–liquid reaction milling method, Powder Technol., vol. 197 (2010) 309–313.
DOI: 10.1016/j.powtec.2009.09.019
Google Scholar
[13]
D. Choi and P. N. Kumta, Surfactant based sol–gel approach to nanostructured LiFePO4 for high rate Li-ion batteries, J. Power Sources, vol. 163 (2007) 1064–1069.
DOI: 10.1016/j.jpowsour.2006.09.082
Google Scholar
[14]
S. H. Ju and Y. C. Kang, LiFePO4/C cathode powders prepared by spray pyrolysis from the colloidal spray solution containing nano-sized carbon black, Mater. Chem. Phys. 107 (2008) 328–333.
DOI: 10.1016/j.matchemphys.2007.07.025
Google Scholar
[15]
J. Wang, Y.-J. Gu, W.-L. Kong, H.-Q. Liu, Y.-B. Chen, and W. Liu, Effect of carbon coating on the crystal orientation and electrochemical performance of nanocrystalline LiFePO4, Solid State Ion., 327 (2018) 11–17.
DOI: 10.1016/j.ssi.2018.10.015
Google Scholar
[16]
J. Wang and X. Sun, Olivine LiFePO4 : the remaining challenges for future energy storage, Energy Environ. Sci., vol. 8( 2015) 1110–1138.
DOI: 10.1039/c4ee04016c
Google Scholar
[17]
Z. Tian, S. Liu, F. Ye, S. Yao, Z. Zhou, and S. Wang, Synthesis and characterization of LiFePO4 electrode materials coated by graphene, Appl. Surf. Sci. 305 (2014) 427–432.
DOI: 10.1016/j.apsusc.2014.03.106
Google Scholar