Mechanical Properties of Hydroxyapatite/La Prepared by a Solid Chemical Reaction Method

Article Preview

Abstract:

Mechanical properties of Hydroxyapatite (Ca10(PO4)6(OH)2, HA, still need to be modified to improve its function as dental filler or bone implant. HA is usually substituted with other metals to increase its mechanical strength. In this study, HA from chicken eggshells was substituted with La with a concentration variation of 1-3 wt % with a solid chemical reaction at a temperature of 1100 °C for 2 hours. The structure, morphology and mechanical strength of HA/La were characterized by XRD, SEM and Vicker Hardness, respectively. All HA samples adopt the P 63/m space group. Likewise, the IR spectra are similar to each other, which shows the formation of the HA structure, indicated by the presence of the -OH and PO43- groups. HA/La with the highest hardness value of 1.85 GPa is obtained from the 3 wt % La doping. The higher the La content added, the higher the hardness of the hydroxyapatite. The doping of 3% La increased the hardness of HA 17%.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1028)

Pages:

352-358

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. R. Noviyanti, N. Akbar, Y. Deawati, Y. T. M. Engela Evy Ernawati, and R. Retna Putri Fauzia, A Novel Hydrothermal Synthesis of Nanohydroxyapatite from Eggshell-Calcium-Oxide Precursors,, Heliyon, vol. 6 (2020), p. e03655.

DOI: 10.1016/j.heliyon.2020.e03655

Google Scholar

[2] S. Waheed, M. Sultan, T. Jamil, and T. Hussain, Comparative analysis of hydroxyapatite synthesized by sol-gel , ultrasonication and microwave assisted technique, vol. 2 (2015) no. 10. Elsevier Ltd.

DOI: 10.1016/j.matpr.2015.11.073

Google Scholar

[3] V. Rodríguez-Lugo, E. Salinas-Rodríguez, R. A. Vázquez, K. Alemán, and A. L. Rivera, Hydroxyapatite synthesis from a starfish and β-tricalcium phosphate using a hydrothermal method,, RSC Adv., vol. 7, no. 13 (2017), p.7631–7639.

DOI: 10.1039/c6ra26907a

Google Scholar

[4] S. C. Wu, H. K. Tsou, H. C. Hsu, S. K. Hsu, S. P. Liou, and W. F. Ho, A hydrothermal synthesis of eggshell and fruit waste extract to produce nanosized hydroxyapatite,, Ceram. Int., vol. 39, no. 7 (2013), p.8183–8188.

DOI: 10.1016/j.ceramint.2013.03.094

Google Scholar

[5] C. R. Gautam, S. Kumar, V. K. Mishra, and S. Biradar, Synthesis, structural and 3-D architecture of lanthanum oxide added hydroxyapatite composites for bone implant applications: Enhanced microstructural and mechanical properties,, Ceram. Int., vol. 43, no. 16 (2017), p.14114–14121.

DOI: 10.1016/j.ceramint.2017.07.150

Google Scholar

[6] S. Lala, T. N. Maity, M. Singha, K. Biswas, and S. K. Pradhan, Effect of doping (Mg, Mn, Zn) on the microstructure and mechanical properties of spark plasma sintered hydroxyapatites synthesized by mechanical alloying,, Ceram. Int., vol. 43, no. 2 (2017), p.2389–2397.

DOI: 10.1016/j.ceramint.2016.11.027

Google Scholar

[7] D. Veljovic et al., Mg/Cu co-substituted hydroxyapatite – Biocompatibility, mechanical properties and antimicrobial activity,, Ceram. Int., vol. 45, no. 17 Part A (2019), p.22029–22039.

DOI: 10.1016/j.ceramint.2019.07.219

Google Scholar

[8] W. He, Y. Xie, Q. Xing, P. Ni, Y. Han, and H. Dai, Sol-gel synthesis of biocompatible Eu3+/Gd3+ co-doped calcium phosphate nanocrystals for cell bioimaging,, J. Lumin., vol. 192 (2017), p.902–909.

DOI: 10.1016/j.jlumin.2017.08.033

Google Scholar

[9] H. S. Sofi, T. Akram, N. Shabir, R. Vasita, A. H. Jadhav, and F. A. Sheikh, Regenerated cellulose nanofibers from cellulose acetate: Incorporating hydroxyapatite (HAp) and silver (Ag) nanoparticles (NPs), as a scaffold for tissue engineering applications,, Mater. Sci. Eng. C, vol. 118 (2020), p.111547.

DOI: 10.1016/j.msec.2020.111547

Google Scholar

[10] A. M. Pandele et al., Synthesis and characterization of cellulose acetate-hydroxyapatite micro and nano composites membranes for water purification and biomedical applications,, Vacuum, vol. 146 (2017), p.599–605.

DOI: 10.1016/j.vacuum.2017.05.008

Google Scholar

[11] A. Zima, Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength,, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 193 (2018), p.175–184.

DOI: 10.1016/j.saa.2017.12.008

Google Scholar

[12] A. Rapacz-Kmita, A. Ślósarczyk, and Z. Paszkiewicz, Mechanical properties of HAp–ZrO2 composites,, J. Eur. Ceram. Soc., vol. 26, no. 8 (2006), p.1481–1488.

DOI: 10.1016/j.jeurceramsoc.2005.01.059

Google Scholar

[13] S. Jaiswal, A. Dubey, and D. Lahiri, The influence of bioactive hydroxyapatite shape and size on the mechanical and biodegradation behaviour of magnesium based composite,, Ceram. Int., Vol. 46, No 17 (2020), pp.27205-27218.

DOI: 10.1016/j.ceramint.2020.07.202

Google Scholar

[14] H. Yang, L. Zhang, and K.-W. Xu, The microstructure and specific properties of La/HAP composite powder and its coating,, Appl. Surf. Sci., vol. 254, no. 2 (2007), p.425–430.

DOI: 10.1016/j.apsusc.2007.05.009

Google Scholar

[15] D. G. Guo, A. H. Wang, Y. Han, and K. W. Xu, Characterization, physicochemical properties and biocompatibility of La-incorporated apatites,, Acta Biomater., vol. 5, no. 9 (2009), p.3512–3523.

DOI: 10.1016/j.actbio.2009.05.026

Google Scholar

[16] Z. Zhen, T. Xi, and Y. Zheng, A review on in vitro corrosion performance test of biodegradable metallic materials,, Trans. Nonferrous Met. Soc. China, vol. 23, no. 8 (2013), p.2283–2293.

DOI: 10.1016/s1003-6326(13)62730-2

Google Scholar

[17] S. Pazarlioglu and S. Salman, Effect of lanthanum oxide additive on the sinterability, physical/mechanical, and bioactivity properties of hydroxyapatite-alpha alumina composite,, J. Aust. Ceram. Soc., vol. 55 (2019), p.1195–1209.

DOI: 10.1007/s41779-019-00336-4

Google Scholar

[18] F. N. Oktar, Hydroxyapatite–TiO2 composites,, Mater. Lett., vol. 60, no. 17 (2006), pp.2207-2210.

Google Scholar

[19] Y.-I. Lee and Y.-J. Kim, Effect of different compositions on characteristics and osteoblastic activity of microporous biphasic calcium phosphate bioceramics,, Mater. Technol., vol. 32, no. 8 (2017), pp.1-9.

DOI: 10.1080/10667857.2017.1286554

Google Scholar