[1]
A. R. Noviyanti, N. Akbar, Y. Deawati, Y. T. M. Engela Evy Ernawati, and R. Retna Putri Fauzia, A Novel Hydrothermal Synthesis of Nanohydroxyapatite from Eggshell-Calcium-Oxide Precursors,, Heliyon, vol. 6 (2020), p. e03655.
DOI: 10.1016/j.heliyon.2020.e03655
Google Scholar
[2]
S. Waheed, M. Sultan, T. Jamil, and T. Hussain, Comparative analysis of hydroxyapatite synthesized by sol-gel , ultrasonication and microwave assisted technique, vol. 2 (2015) no. 10. Elsevier Ltd.
DOI: 10.1016/j.matpr.2015.11.073
Google Scholar
[3]
V. Rodríguez-Lugo, E. Salinas-Rodríguez, R. A. Vázquez, K. Alemán, and A. L. Rivera, Hydroxyapatite synthesis from a starfish and β-tricalcium phosphate using a hydrothermal method,, RSC Adv., vol. 7, no. 13 (2017), p.7631–7639.
DOI: 10.1039/c6ra26907a
Google Scholar
[4]
S. C. Wu, H. K. Tsou, H. C. Hsu, S. K. Hsu, S. P. Liou, and W. F. Ho, A hydrothermal synthesis of eggshell and fruit waste extract to produce nanosized hydroxyapatite,, Ceram. Int., vol. 39, no. 7 (2013), p.8183–8188.
DOI: 10.1016/j.ceramint.2013.03.094
Google Scholar
[5]
C. R. Gautam, S. Kumar, V. K. Mishra, and S. Biradar, Synthesis, structural and 3-D architecture of lanthanum oxide added hydroxyapatite composites for bone implant applications: Enhanced microstructural and mechanical properties,, Ceram. Int., vol. 43, no. 16 (2017), p.14114–14121.
DOI: 10.1016/j.ceramint.2017.07.150
Google Scholar
[6]
S. Lala, T. N. Maity, M. Singha, K. Biswas, and S. K. Pradhan, Effect of doping (Mg, Mn, Zn) on the microstructure and mechanical properties of spark plasma sintered hydroxyapatites synthesized by mechanical alloying,, Ceram. Int., vol. 43, no. 2 (2017), p.2389–2397.
DOI: 10.1016/j.ceramint.2016.11.027
Google Scholar
[7]
D. Veljovic et al., Mg/Cu co-substituted hydroxyapatite – Biocompatibility, mechanical properties and antimicrobial activity,, Ceram. Int., vol. 45, no. 17 Part A (2019), p.22029–22039.
DOI: 10.1016/j.ceramint.2019.07.219
Google Scholar
[8]
W. He, Y. Xie, Q. Xing, P. Ni, Y. Han, and H. Dai, Sol-gel synthesis of biocompatible Eu3+/Gd3+ co-doped calcium phosphate nanocrystals for cell bioimaging,, J. Lumin., vol. 192 (2017), p.902–909.
DOI: 10.1016/j.jlumin.2017.08.033
Google Scholar
[9]
H. S. Sofi, T. Akram, N. Shabir, R. Vasita, A. H. Jadhav, and F. A. Sheikh, Regenerated cellulose nanofibers from cellulose acetate: Incorporating hydroxyapatite (HAp) and silver (Ag) nanoparticles (NPs), as a scaffold for tissue engineering applications,, Mater. Sci. Eng. C, vol. 118 (2020), p.111547.
DOI: 10.1016/j.msec.2020.111547
Google Scholar
[10]
A. M. Pandele et al., Synthesis and characterization of cellulose acetate-hydroxyapatite micro and nano composites membranes for water purification and biomedical applications,, Vacuum, vol. 146 (2017), p.599–605.
DOI: 10.1016/j.vacuum.2017.05.008
Google Scholar
[11]
A. Zima, Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength,, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 193 (2018), p.175–184.
DOI: 10.1016/j.saa.2017.12.008
Google Scholar
[12]
A. Rapacz-Kmita, A. Ślósarczyk, and Z. Paszkiewicz, Mechanical properties of HAp–ZrO2 composites,, J. Eur. Ceram. Soc., vol. 26, no. 8 (2006), p.1481–1488.
DOI: 10.1016/j.jeurceramsoc.2005.01.059
Google Scholar
[13]
S. Jaiswal, A. Dubey, and D. Lahiri, The influence of bioactive hydroxyapatite shape and size on the mechanical and biodegradation behaviour of magnesium based composite,, Ceram. Int., Vol. 46, No 17 (2020), pp.27205-27218.
DOI: 10.1016/j.ceramint.2020.07.202
Google Scholar
[14]
H. Yang, L. Zhang, and K.-W. Xu, The microstructure and specific properties of La/HAP composite powder and its coating,, Appl. Surf. Sci., vol. 254, no. 2 (2007), p.425–430.
DOI: 10.1016/j.apsusc.2007.05.009
Google Scholar
[15]
D. G. Guo, A. H. Wang, Y. Han, and K. W. Xu, Characterization, physicochemical properties and biocompatibility of La-incorporated apatites,, Acta Biomater., vol. 5, no. 9 (2009), p.3512–3523.
DOI: 10.1016/j.actbio.2009.05.026
Google Scholar
[16]
Z. Zhen, T. Xi, and Y. Zheng, A review on in vitro corrosion performance test of biodegradable metallic materials,, Trans. Nonferrous Met. Soc. China, vol. 23, no. 8 (2013), p.2283–2293.
DOI: 10.1016/s1003-6326(13)62730-2
Google Scholar
[17]
S. Pazarlioglu and S. Salman, Effect of lanthanum oxide additive on the sinterability, physical/mechanical, and bioactivity properties of hydroxyapatite-alpha alumina composite,, J. Aust. Ceram. Soc., vol. 55 (2019), p.1195–1209.
DOI: 10.1007/s41779-019-00336-4
Google Scholar
[18]
F. N. Oktar, Hydroxyapatite–TiO2 composites,, Mater. Lett., vol. 60, no. 17 (2006), pp.2207-2210.
Google Scholar
[19]
Y.-I. Lee and Y.-J. Kim, Effect of different compositions on characteristics and osteoblastic activity of microporous biphasic calcium phosphate bioceramics,, Mater. Technol., vol. 32, no. 8 (2017), pp.1-9.
DOI: 10.1080/10667857.2017.1286554
Google Scholar