Synthesis Dimethyl Ether from Methanol Using Red Mud Catalyst

Article Preview

Abstract:

Dimethyl ether (DME) is apromising alternative for substituting petroleum fuel including gasoline, liquified petroleum gas, and diesel. In this research, the utilization of red mud as catalyst was investigated to dehydrate methanol to Dimethyl Ether (DME). Red mud is a solid waste from the bauxite industry which lead to environmental issues if did not treat properly. The catalyst characteristics were determined in terms of porosity, crystallinity, elemental composition, and pores size distribution. The catalysts activity was evaluated in a fixed-bed reactor at temperature range 200-300 °C. The influence of different parameters, including temperature and type of catalyst were varied to obtain the optimum reaction condition. The results revealed that the highest methanol conversion was 68% at temperature of 300 °C when using calcined red mud catalyst.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1029)

Pages:

147-152

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Hayer, H.B. Davijany, R. Myrstad, A. Holmen, P. Pfeifer, and H.J. Venvik, Characteristics of integrated micro packed bed reactor-heat exchanger configurations in the direct synthesis of dimethyl ether, Chem. Eng. Process. Process Intensif. 70 (2013) 77–85.

DOI: 10.1016/j.cep.2013.03.021

Google Scholar

[2] T.H. Fleisch, A. Basu, R.A. Sills, Introduction and advancement of a new clean global fuel: The status of DME developments in China and beyond, J. Nat. Gas Sci. Eng. 9 (2012) 94−107.

DOI: 10.1016/j.jngse.2012.05.012

Google Scholar

[3] F. Pontzen, W. Liebner, V. Gronemann, M. Rothaemel, B. Ahlers, CO2-based methanol and DME – Efficient technologies for industrial scale production, Catal. Today 171 (2011) 242−250.

DOI: 10.1016/j.cattod.2011.04.049

Google Scholar

[4] G.R. Moradi, F. Yaripour, P. Vale-Sheyda, Catalytic dehydration of methanol to dimethyl ether over mordenite catalysts, Fuel Process. Technol. 91 (2010) 461-468.

DOI: 10.1016/j.fuproc.2009.12.005

Google Scholar

[5] D. Macina, Z. Piwowarska, K. Tarach, K. Gora-Marek, J. Ryczkowski, L. Chmielarz, Mesoporous silica materials modified with alumina polycations as catalysts for the synthesis of dimethyl ether from methanol, Mater. Res. Bull. 74 (2016) 425-435.

DOI: 10.1016/j.materresbull.2015.11.018

Google Scholar

[6] Q. Tang, H. Xu, Y. Zheng, J. Wang, H. Li, J. Zhang, Catalytic dehydration of methanol to dimethyl ether over micro–mesoporous ZSM-5/MCM-41 composite molecular sieves Appl. Catal. A Gen. 413–414 (2012), 36-42.

DOI: 10.1016/j.apcata.2011.10.039

Google Scholar

[7] D. Masih, S. Rohani, J.N. Kondo, T. Tatsumi, , Low-temperature methanol dehydration various to dimethyl ether over small-pore zeolites, Appl. Catal. B Environ. 217 (2017) 247–255.

DOI: 10.1016/j.apcatb.2017.05.089

Google Scholar

[8] H. Li, S. He, K. Ma, Q. Wu, Q. Jiao, K. Sun, Micro-mesoporous composite molecular sieves H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether: Effect of SiO2/Al2O3 ratio in H-ZSM-5, Appl. Catal. A: Gen. 450 (2013) 152-159.

DOI: 10.1016/j.apcata.2012.10.014

Google Scholar

[9] Y. Sang, H. Liu, S. He, H. Li, Q. Jiao, Q. Wu, K. Sun, Catalytic performance of hierarchical H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether, J. Energy Chem. 22 (5) (2013) 769-777.

DOI: 10.1016/s2095-4956(13)60102-3

Google Scholar

[10] C.L. Chiang, K.S. Lin, Preparation and characterization of CuO-Al2O3 catalyst for dimethyl ether production via methanol dehydration, Int. J. Hydrog. Energy 42 (37) (2017) 23526-23538.

DOI: 10.1016/j.ijhydene.2017.01.063

Google Scholar

[11] M.A. Armenta, R. Valdez, J.M. Quintana, R. Silva-Rodrigo, L. Cota, A. Olivas, Highly selective CuO/γ–Al2O3 catalyst promoted with hematite for efficient methanol dehydration to dimethyl ether, Int. J. Hydrog. Energ. 43 (13) (2018) 6551-6560.

DOI: 10.1016/j.ijhydene.2018.02.051

Google Scholar

[12] S.S. Akarmazyan, P. Panagiotopoulou, A. Kambolis, C. Papadopoulou, D.I. Kondarides, Methanol dehydration to dimethylether over Al2O3 catalysts. Appl. Catal. B Environ. 145 (2014) 136-148.

DOI: 10.1016/j.apcatb.2012.11.043

Google Scholar

[13] L. Zhang, J. Wang, P. Wu, Z. Hou, J. Fei, X. Zheng, Synthesis of Dimethyl Ether via Methanol Dehydration over Combined Al2O3-HZSM-5 Solid Acids, Chin. J. Catal. 31 (2010) 987–992.

DOI: 10.1016/s1872-2067(10)60098-8

Google Scholar

[14] W. Alharbi, E.F. Kozhevnikova, I.V. Kozhevnikov, Dehydration of Methanol to Dimethyl Ether over Heteropoly Acid Catalysts: The Relationship between Reaction Rate and Catalyst Acid Strength, ACS Catal. 5 (2015) 7186−7193.

DOI: 10.1021/acscatal.5b01911

Google Scholar

[15] R.M. Ladera, J.L.G. Fierro, M. Ojeda, S. Rojas, TiO2-supported heteropoly acids for low-temperature synthesis of dimethyl ether from methanol J. Catal. 312 (2014) 195-203.

DOI: 10.1016/j.jcat.2014.01.016

Google Scholar

[16] R. Debek, M.F.G. Ribeiro, A. Fernandes, M. Motak, Dehydration of methanol to dimethyl ether over modified vermiculites, C.R. Chimie, 18 (2015) 1211–1222.

DOI: 10.1016/j.crci.2015.05.003

Google Scholar

[17] A.M. Bahmanpour, F. Heroguel, C.J. Baranowski, J.S. Luterbacher, O. Krocher, Selective synthesis of dimethyl ether on eco-friendly K10 montmorillonite clay, Appl. Catal. A Gen. 560 (2018) 165-170.

DOI: 10.1016/j.apcata.2018.05.006

Google Scholar

[18] W. Pranee, P. Assawasaengrat, A. Neramittagapong, S. Neramittagapong, Dimethyl Ether Synthesis via Methanol Dehydration over Diatomite Catalyst Modified Using Hydrochloric Acid, Advanced Materials Research 931-932 (2014) 42-46.

DOI: 10.4028/www.scientific.net/amr.931-932.42

Google Scholar

[19] C. Herrera, M.C. Reyes, M.A. Larrubia, M.V.D. Barroso, M.R.D. Rey, L.J. Alemany, Dimethyl ether synthesis via methanol dehydration over Ta-supported catalysts, Appl. Catal. A Gen. 582 (2019) 117088.

DOI: 10.1016/j.apcata.2019.05.022

Google Scholar

[20] R. Ladera, E. Finocchio, S. Rojas, G. Busca, J.L.G. Fierro, M. Ojeda, Supported WOx-based catalysts for methanol dehydration to dimethyl ether, Fuel 113 (2013) 1-9.

DOI: 10.1016/j.fuel.2013.05.083

Google Scholar

[21] A.E.A. Said, M.A. El-Aal, Effect of different metal sulfate precursors on structural and catalytic performance of zirconia in dehydration of methanol to dimethyl ether, J. Fuel Chem. Technol. 46 (1) (2018) 67-74.

DOI: 10.1016/s1872-5813(18)30004-5

Google Scholar

[22] S. Hosseininejad, A. Afacan, R.E. Hayes, Catalytic and kinetic study of methanol dehydration to dimethyl ether, Chem. Eng. Res. Des. 90 (6) (2012) 825-833.

DOI: 10.1016/j.cherd.2011.10.007

Google Scholar