[1]
F. Hayer, H.B. Davijany, R. Myrstad, A. Holmen, P. Pfeifer, and H.J. Venvik, Characteristics of integrated micro packed bed reactor-heat exchanger configurations in the direct synthesis of dimethyl ether, Chem. Eng. Process. Process Intensif. 70 (2013) 77–85.
DOI: 10.1016/j.cep.2013.03.021
Google Scholar
[2]
T.H. Fleisch, A. Basu, R.A. Sills, Introduction and advancement of a new clean global fuel: The status of DME developments in China and beyond, J. Nat. Gas Sci. Eng. 9 (2012) 94−107.
DOI: 10.1016/j.jngse.2012.05.012
Google Scholar
[3]
F. Pontzen, W. Liebner, V. Gronemann, M. Rothaemel, B. Ahlers, CO2-based methanol and DME – Efficient technologies for industrial scale production, Catal. Today 171 (2011) 242−250.
DOI: 10.1016/j.cattod.2011.04.049
Google Scholar
[4]
G.R. Moradi, F. Yaripour, P. Vale-Sheyda, Catalytic dehydration of methanol to dimethyl ether over mordenite catalysts, Fuel Process. Technol. 91 (2010) 461-468.
DOI: 10.1016/j.fuproc.2009.12.005
Google Scholar
[5]
D. Macina, Z. Piwowarska, K. Tarach, K. Gora-Marek, J. Ryczkowski, L. Chmielarz, Mesoporous silica materials modified with alumina polycations as catalysts for the synthesis of dimethyl ether from methanol, Mater. Res. Bull. 74 (2016) 425-435.
DOI: 10.1016/j.materresbull.2015.11.018
Google Scholar
[6]
Q. Tang, H. Xu, Y. Zheng, J. Wang, H. Li, J. Zhang, Catalytic dehydration of methanol to dimethyl ether over micro–mesoporous ZSM-5/MCM-41 composite molecular sieves Appl. Catal. A Gen. 413–414 (2012), 36-42.
DOI: 10.1016/j.apcata.2011.10.039
Google Scholar
[7]
D. Masih, S. Rohani, J.N. Kondo, T. Tatsumi, , Low-temperature methanol dehydration various to dimethyl ether over small-pore zeolites, Appl. Catal. B Environ. 217 (2017) 247–255.
DOI: 10.1016/j.apcatb.2017.05.089
Google Scholar
[8]
H. Li, S. He, K. Ma, Q. Wu, Q. Jiao, K. Sun, Micro-mesoporous composite molecular sieves H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether: Effect of SiO2/Al2O3 ratio in H-ZSM-5, Appl. Catal. A: Gen. 450 (2013) 152-159.
DOI: 10.1016/j.apcata.2012.10.014
Google Scholar
[9]
Y. Sang, H. Liu, S. He, H. Li, Q. Jiao, Q. Wu, K. Sun, Catalytic performance of hierarchical H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether, J. Energy Chem. 22 (5) (2013) 769-777.
DOI: 10.1016/s2095-4956(13)60102-3
Google Scholar
[10]
C.L. Chiang, K.S. Lin, Preparation and characterization of CuO-Al2O3 catalyst for dimethyl ether production via methanol dehydration, Int. J. Hydrog. Energy 42 (37) (2017) 23526-23538.
DOI: 10.1016/j.ijhydene.2017.01.063
Google Scholar
[11]
M.A. Armenta, R. Valdez, J.M. Quintana, R. Silva-Rodrigo, L. Cota, A. Olivas, Highly selective CuO/γ–Al2O3 catalyst promoted with hematite for efficient methanol dehydration to dimethyl ether, Int. J. Hydrog. Energ. 43 (13) (2018) 6551-6560.
DOI: 10.1016/j.ijhydene.2018.02.051
Google Scholar
[12]
S.S. Akarmazyan, P. Panagiotopoulou, A. Kambolis, C. Papadopoulou, D.I. Kondarides, Methanol dehydration to dimethylether over Al2O3 catalysts. Appl. Catal. B Environ. 145 (2014) 136-148.
DOI: 10.1016/j.apcatb.2012.11.043
Google Scholar
[13]
L. Zhang, J. Wang, P. Wu, Z. Hou, J. Fei, X. Zheng, Synthesis of Dimethyl Ether via Methanol Dehydration over Combined Al2O3-HZSM-5 Solid Acids, Chin. J. Catal. 31 (2010) 987–992.
DOI: 10.1016/s1872-2067(10)60098-8
Google Scholar
[14]
W. Alharbi, E.F. Kozhevnikova, I.V. Kozhevnikov, Dehydration of Methanol to Dimethyl Ether over Heteropoly Acid Catalysts: The Relationship between Reaction Rate and Catalyst Acid Strength, ACS Catal. 5 (2015) 7186−7193.
DOI: 10.1021/acscatal.5b01911
Google Scholar
[15]
R.M. Ladera, J.L.G. Fierro, M. Ojeda, S. Rojas, TiO2-supported heteropoly acids for low-temperature synthesis of dimethyl ether from methanol J. Catal. 312 (2014) 195-203.
DOI: 10.1016/j.jcat.2014.01.016
Google Scholar
[16]
R. Debek, M.F.G. Ribeiro, A. Fernandes, M. Motak, Dehydration of methanol to dimethyl ether over modified vermiculites, C.R. Chimie, 18 (2015) 1211–1222.
DOI: 10.1016/j.crci.2015.05.003
Google Scholar
[17]
A.M. Bahmanpour, F. Heroguel, C.J. Baranowski, J.S. Luterbacher, O. Krocher, Selective synthesis of dimethyl ether on eco-friendly K10 montmorillonite clay, Appl. Catal. A Gen. 560 (2018) 165-170.
DOI: 10.1016/j.apcata.2018.05.006
Google Scholar
[18]
W. Pranee, P. Assawasaengrat, A. Neramittagapong, S. Neramittagapong, Dimethyl Ether Synthesis via Methanol Dehydration over Diatomite Catalyst Modified Using Hydrochloric Acid, Advanced Materials Research 931-932 (2014) 42-46.
DOI: 10.4028/www.scientific.net/amr.931-932.42
Google Scholar
[19]
C. Herrera, M.C. Reyes, M.A. Larrubia, M.V.D. Barroso, M.R.D. Rey, L.J. Alemany, Dimethyl ether synthesis via methanol dehydration over Ta-supported catalysts, Appl. Catal. A Gen. 582 (2019) 117088.
DOI: 10.1016/j.apcata.2019.05.022
Google Scholar
[20]
R. Ladera, E. Finocchio, S. Rojas, G. Busca, J.L.G. Fierro, M. Ojeda, Supported WOx-based catalysts for methanol dehydration to dimethyl ether, Fuel 113 (2013) 1-9.
DOI: 10.1016/j.fuel.2013.05.083
Google Scholar
[21]
A.E.A. Said, M.A. El-Aal, Effect of different metal sulfate precursors on structural and catalytic performance of zirconia in dehydration of methanol to dimethyl ether, J. Fuel Chem. Technol. 46 (1) (2018) 67-74.
DOI: 10.1016/s1872-5813(18)30004-5
Google Scholar
[22]
S. Hosseininejad, A. Afacan, R.E. Hayes, Catalytic and kinetic study of methanol dehydration to dimethyl ether, Chem. Eng. Res. Des. 90 (6) (2012) 825-833.
DOI: 10.1016/j.cherd.2011.10.007
Google Scholar