Comparison of Chemically Treated Luffa cylindrica Using Fourier Transform Infrared Spectroscopy (FTIR) and Thermal Analysis

Article Preview

Abstract:

The world as we probably are aware of is confronting a major problem known as environmental pollution, therefore, leading to global warming. Researchers from around the world have been focusing on green composites to improve the general effect of polymer pollution leading to environmental pollution. This need has constrained numerous researchers to concentrate on making composites utilizing natural fibers and biodegradable polymers. Moreover, natural fibers are cheaper to purchase, have great mechanical properties, biodegradability and demand lower amount of production energy. This paper focuses on one of the natural fibers known as Luffa Cylindrica (LC). Chemical surface treatments are necessary in order to get the best adhesion possible between the polymer and fiber which leads to better mechanical properties. Therefore, in this paper sodium hydroxide, silane and acetylation chemical surface treatments were performed. Furthermore, with the help of Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA) and Derivative Thermogravimetry (DTG) it was predicted that all the chemical surface treatments were successful. With the help of the results it was predicted that these specific chemical surface treatments showed removal of hemicellulose and lignin. Furthermore, with the help of thermal analysis it was predicted that silane treated samples showed highest amount of thermal resistance whereas, acetylated samples predicted lowest.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1030)

Pages:

53-62

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.K.A. Niharika Mohanta, Investigation of mechanical properties of luffa cylindrica fibre reinforced epoxy hybrid composite,, (in English), vol. 7, pp.1-10, 2015, doi: http://dx.doi.org/10.4314/ijest.v7i1.1. MultiCraft.

DOI: 10.15376/biores.10.4.8364-8377

Google Scholar

[2] H. W. Sha Yin, Jiani Li, Robert O. Ritchie, Jun Xu, Light but tough bio-inherited materials: Luffa sponge based nickel-plated composites,, (in English), vol. 94, pp.10-18, 2019, doi: https://doi.org/10.1016/j.jmbbm.2019.02.029. Elsevier.

DOI: 10.1016/j.jmbbm.2019.02.029

Google Scholar

[3] T. H. D. S. Valcineide O.A. Tanobe, Marilda Munaro, Sandro C. Amico, A comprehensive characterization of chemically treated Brazilian sponge-gourds (Luffa cylindrica),, (in English), vol. 24, pp.474-482, 2005, doi:.

DOI: 10.1016/j.polymertesting.2004.12.004

Google Scholar

[4] S. K. Saw, Effect of stacking patterns on morphological and mechanical properties of luffa/coir hybrid fiber-reinforced epoxy composite laminates,, in Hybrid Polymer Composite Materials Structure and Chemistry, vol. 1, M. K. T. Vijay Kumar Thakur, Raju Kumar Gupta Ed.: Woodhead Publishing, 2017, ch. 356, pp.313-333. Elsevier.

DOI: 10.1016/b978-0-08-100791-4.00012-4

Google Scholar

[5] Q. L. Shouzheng Su, Jingyuan Liu, Hongsen Zhang, Rumin Li, Xiaoyan Jing, Jun Wang, Polyethyleneimine-functionalized Luffa cylindrica for efficient uranium extraction,, (in English), vol. 530, pp.538-546, 2018, doi: https://doi.org/10.1016/j.jcis.2018.03.102. Elsevier.

DOI: 10.1016/j.jcis.2018.03.102

Google Scholar

[6] D. D. a. B. H. Mizi Fan, Fourier Transform Infrared Spectroscopy for Natural Fibres,, in Fourier Transform - Material Analysis, D. S. Salih, Ed.: InTech, 2012, ch. 3, pp.45-68.

DOI: 10.5772/35482

Google Scholar

[7] M. B. Arun Kumar Gupta, S. Mohanty, and S. K. Nayak, Mechanical, Thermal Degradation, and Flammability Studies on Surface Modified Sisal Fiber Reinforced Recycled Polypropylene Composites,, (in English), vol. 2012, pp.1-13, 12 November 2012 2012. Hindawi Publishing Corporation Advances in Mechanical Engineering.

DOI: 10.1155/2012/418031

Google Scholar

[8] A. Dutta, Fourier Transform Infrared Spectroscopy,, Elsevier, 2017, ch. 4, pp.73-93. Elsevier.

Google Scholar

[9] S. C. D. C. Parida, S.K. Dash, Mechanical Analysis of Bio Nanocomposite Prepared from Luffa cylindrica,, (in English), vol. 4, pp.53-59, 2012,.

DOI: 10.1016/j.proche.2012.06.008

Google Scholar

[10] J. H. F. a. L. A. Wall, General Treatment of the Thermogravimetry of Polymers,, (in English), vol. 70A, pp.1-37, (1966).

Google Scholar

[11] R. P. Sudhir Kumar Saw, Sourabh Nandy, Joyjeet Ghose, and Gautam Sarkhel, Fabrication, Characterization, and Evaluation of Luffa cylindrica Fiber Reinforced Epoxy Composites,, (in English), vol. 8, pp.4805-4826, 2013. bioresources.

DOI: 10.15376/biores.8.4.4805-4826

Google Scholar

[12] J. T. Kaewta Kaewtatip, Studies on the structure and properties of thermoplastic starch/luffa fiber composites,, (in English), vol. 40, pp.314-318, 2012, doi: http://dx.doi.org/10.1016/j.matdes.2012.03.053. Elsevier.

DOI: 10.1016/j.matdes.2012.03.053

Google Scholar

[13] L. G. T. a. S. P. Xue Li, Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review,, (in English), vol. 15, pp.25-33, 2007,.

DOI: 10.1007/s10924-006-0042-3

Google Scholar

[14] S. M. L. Ghali, M. Zidi, F. Sakli, Effect of pre-treatment of Luffa fibres on the structural properties,, (in English), vol. 63, pp.61-63, 2009, doi:.

DOI: 10.1016/j.matlet.2008.09.008

Google Scholar

[15] K. K. N. Karthi, S. Sathish, S. Gokulkumar, L. Prabhu, N. Vigneshkumar, An overview: Natural fiber reinforced hybrid composites, chemical treatments and application areas,, (in English), vol. 27, pp.2828-2834, 2020, doi: https://doi.org/10.1016/j.matpr.2020.01.011. Elsevier.

DOI: 10.1016/j.matpr.2020.01.011

Google Scholar

[16] M. M. V. Vilay, R. Mat Taib, Mitsugu Todo, Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber–reinforced unsaturated polyester composites,, (in English), vol. 68, pp.631-638, 2008,.

DOI: 10.1016/j.compscitech.2007.10.005

Google Scholar

[17] A. B. Sherely Annie Paul, Laurent Ibos, Yves Candau, Kuruvilla Joseph, Sabu Thomas, Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials,, (in English), vol. 39, pp.1582-1588, 2008,.

DOI: 10.1016/j.compositesa.2008.06.004

Google Scholar

[18] A. V.-G. l. P.J. Herrera-Franco, A study of the mechanical properties of short natural-fiber reinforced composites,, (in English), vol. 36, pp.597-608, 2005,.

DOI: 10.1016/j.compositesb.2005.04.001

Google Scholar

[19] P. K. K. a. R. Kumar, Effect of Silanes on Mechanical Properties of Bamboo Fiber-epoxy Composites,, (in English), vol. 29, pp.1-10, 2010,.

Google Scholar

[20] M. S. L. H. M. Hamideh Hajiha, Modification and Characterization of Hemp and Sisal Fibers,, (in English), vol. 11, pp.144-168, 2014,.

Google Scholar

[21] S. S. G. Mukesh Effect of chemical modification of fiber surface on natural fiber composites: A review,, (in English), vol. 18, pp.3428-3434, 2019. Elsevier.

DOI: 10.1016/j.matpr.2019.07.270

Google Scholar

[22] J. P. P. a. P. H. Parsania, Biodegradable and Biocompatible Polymer Composites,, in Characterization, testing, and reinforcing materials of biodegradable composites: Elsevier, 2018, ch. 55-79, p.438.

DOI: 10.1016/b978-0-08-100970-3.00003-1

Google Scholar

[23] P. S. S. L. Boopathi, K. Mylsamy, Investigation of physical, chemical and mechanical properties of raw and alkali treated Borassus fruit fiber,, (in English), vol. 43, pp.3044-3052, 2012, doi: http://dx.doi.org/10.1016/j.compositesb.2012.05.002. Elsevier.

DOI: 10.1016/j.compositesb.2012.05.002

Google Scholar

[24] A. D. a. M. D. M. S. N. Pandey, Thermal Analysis of Chemically Treated Jute Fibers,, (in English), vol. 3, pp.143-150, (1993).

Google Scholar