[1]
DENG X H, YANG Z J. Current situation and Prospect of Titanium alloy Additive Manufacturing Technology [J]. Development and Application of Materials,2014,29(5):113-120.
Google Scholar
[2]
GAO Xiang-yu, GAO Xiang-xi, JIANG Tao, et al. Defects Analysis of Large Additive Manufacturing Beam of Titanium Alloy[J]. Failure Analysis and Prevention, 2018, 13(1): 43-48.
Google Scholar
[3]
ZHOU J Y, LIU C K, ZHAO W X, et al. Prior Particle Boundary of PM FGH96 Superalloy and Its In-situ High-Cycle Fatigue at Elevated Temperature[J]. Journal of Aeronautical Materials. 2017,37(5):83-89.
Google Scholar
[4]
LIANG X K, DONG P, CHEN J L, et al. Microstructure and mechanical properties of selected laser melting Ti-6Al-4V alloy[J]. Applied Laser, 2014, 34(2): 101-104.
DOI: 10.3788/al20143402.101
Google Scholar
[5]
XIAO Z N, LIU T T, LIAO W H, et al. Microstructure and Mechanical Properties of TC4 Titanium Alloy Formed by Selective Laser Melting After Heat Treatment[J]. Chinese Journal of Lasers, 2017, 44(9): 87-95.
DOI: 10.3788/cjl201744.0902001
Google Scholar
[6]
HOU W, CHEN J,CHU S L,et al. Anisotropy of Microstructure and Tensile Properties of AlSi10Mg Formed by Selective Laser Melting[J]. Chinese Journal of Lasers,2018,45(499):66-77.
Google Scholar
[7]
ZHANG B, CAO Y, WANG L, et al. Anisotropy of Body-Centered-Cubic Porous Structures by Selective Laser Melting[J]. Chinese Journal of Lasers, 2017,44(8):115-123.
Google Scholar
[8]
TAN T. Composition Detection and Microstructure Analysis of Laser Additive Manufacturing of Titanium Alloys[D]. Changsha: Hunan University, (2014).
Google Scholar
[9]
Lore Thijs, Frederik Verhaeghe, Tom Craeghs, et al. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V[J]. Acta Materialia,2010,58(9):3303-3312.
DOI: 10.1016/j.actamat.2010.02.004
Google Scholar
[10]
Chunlei Qiu, Nicholas J.E. Adkins, Moataz M.Attallah. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V[J]. Materials Science and Engineering A, 2013, 578: 230-239.
DOI: 10.1016/j.msea.2013.04.099
Google Scholar
[11]
H.Attar, M.Calin, L.C. Zhang, et al.Manufacture by selective laser melting and mechanical behavior of commercially pure titanium[J].Materials Science and Engineering A,2014,593:170-177.
DOI: 10.1016/j.msea.2013.11.038
Google Scholar
[12]
M. Simonelli, Y.Y. Tse, C. Tuck. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti–6Al–4V[J]. Materials Science & Engineering A, 2014, 616:1–11.
DOI: 10.1016/j.msea.2014.07.086
Google Scholar
[13]
Marco Simonelli, Yau Yau Tse, Chris Tuck. On the Texture Formation of Selective Laser Melted Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2014, 45(6): 2863–2872.
DOI: 10.1007/s11661-014-2218-0
Google Scholar
[14]
Edward Chlebus, Bogumiła Kuźnicka, Tomasz Kurzynowski. Microstructure and mechanical behaviour of Ti-6Al-7Nb alloy produced by selective laser melting[J]. Materials Characterization, 2011, 62(5): 488-495.
DOI: 10.1016/j.matchar.2011.03.006
Google Scholar
[15]
C.R. Brooks, A.Choudhury. Failure Analysis of Engineering Materials[M]. NewYork: McGraw-Hill, (2002).
Google Scholar
[16]
Li Huaixue, Huang Baiying, Sun Fan, et al. Microstructure and tensile properties of Ti-6Al-4V alloys fabricated by selective laser melting[J]. Rare Metal Materials and Engineering, 2013, 42(S2): 209-212.
Google Scholar