[1]
O. N. Senkov , F. H. Froes, Thermohydrogen processing of titanium alloys, International Jounal of Hydrogen Energy. 24(1999) 565–576.
DOI: 10.1016/s0360-3199(98)00112-8
Google Scholar
[2]
F. R. Froes, D. Eylon, C. Suryanarayana, Thermochemical Processing of Titanium Alloys, JOM. 3(1990) (1990).
DOI: 10.1007/bf03220890
Google Scholar
[3]
O. N. Senkov , F. H. Froes, Recent Advances in the Thermohydrogen Processing of Titanium Alloys, JOM. 7(1996) 42-47.
DOI: 10.1007/bf03222997
Google Scholar
[4]
B. Yuan, X. Zhang, Y. Wang, Q. Chen, Y. Wan, Y. Zheng, Z. Xing, H. Zhan, Effects of cyclic thermo-hydrogen processing on microstructural and mechanical properties of Ti6Al4V alloy at room temperature, Vacuum. 171(2020) 109015.
DOI: 10.1016/j.vacuum.2019.109015
Google Scholar
[5]
L. Zhao, Basic research on cutting deformation of Hydrogen titanium alloy, Nanjing University of Aeronautics and Astronautics, (2009).
Google Scholar
[6]
K. B.A., T. V.D., E. Yu.B., K. A.N., Effect Of Hydrogen On The Machinablity Of VT5-1 Alloy By Cutting, Materials Science. 32(1996) 753-759.
Google Scholar
[7]
X. Cao, Study on microstructure changes of TC21 alloy through high temperature hydrogen treatment, Titanium Industry Progress. 22(2005)16-18.
Google Scholar
[8]
P. Li, Study on surface formation mechanism of high speed cutting workpiece material, Shenyang Ligong University, (2016).
Google Scholar
[9]
Q. Fu, Experimental study on machinability of Hydrogen TC4 titanium alloy, Nanjing University of Aeronautics and Astronautics, (2008).
Google Scholar
[10]
N. Shi, Effect of hydrogenization on microstructure and properties and thermo-deformation behavior of TC4 titanium alloy, Harbin Institute of Technology, (2013).
Google Scholar